Estimation Theory at First Glance

Detlef Prescher University of Heidelberg prescher@cl.uni-heidelberg.de

April 23, 2007

Corpora

Definition 1. Let \mathcal{X} be a countable set. Then, each function $f: \mathcal{X} \to \mathcal{N}$ is called a **corpus**, each $x \in \mathcal{X}$ is called a **type**, and each value of f is called a **type frequency**. The **corpus size** is defined as

$$|f| = \sum_{x \in \mathcal{X}} f(x)$$

(Here, \mathcal{N} is the set of all natural numbers, including 0.)

Occurence Frequencies

Definition 2. Let x_1, \ldots, x_n be a finite sequence of type instances from \mathcal{X} . Each x_i of this sequence is called a **token**. The **occurrence frequency** of a type x in the sequence is defined as the following count

 $f(x) = |\{ i \mid x_i = x\}|$

Probability Distributions

Definition 3. Let \mathcal{X} be a countable set of types. A real-valued function $p: \mathcal{X} \to \mathcal{R}$ is called a **probability distribution on** \mathcal{X} , if p has two properties: First, p's values are non-negative numbers

 $p(x) \ge 0$ for all $x \in \mathcal{X}$

and second, p 's values sum to 1

$$\sum_{x \in \mathcal{X}} p(x) = 1$$

The Three Axioms of Probability Theory

Define

$$p(A) := \sum_{x \in A} p(x) \text{ for all } A \subseteq \mathcal{X}$$

to satisfy the three axioms of standard Probabiliy Theory.

Axiom 1. $p(A) \ge 0$ for any event $A \subseteq \mathcal{X}$.

Axiom 2. p(X) = 1.

Axiom 3. $p(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} p(A_i)$ for any infinite sequence of disjoint events $A_1, A_2, A_3, ...$

Relative-Frequency Estimates

Definition 4. Let f be a non-empty and finite corpus. The probability distribution

$$\tilde{p}: \mathcal{X} \to [0, 1]$$
 where $\tilde{p}(x) = \frac{f(x)}{|f|}$

is called the **relative-frequency estimate** on f.

Notes:

 \tilde{p} is well defined, since both |f| > 0 and $|f| < \infty$.

 \tilde{p} 's values sum to one: $\sum_{x \in \mathcal{X}} \tilde{p}(x) = \sum_{x \in \mathcal{X}} |f|^{-1} \cdot f(x) = |f|^{-1} \cdot \sum_{x \in \mathcal{X}} f(x) = |f|^{-1} \cdot |f| = 1.$

Probability Models

Definition 5. A non-empty set \mathcal{M} of probability distributions on a set \mathcal{X} of types is called a **probability model on** \mathcal{X} . The elements of \mathcal{M} are called **instances of the model** \mathcal{M} . The **unrestricted probability model** is the set $\mathcal{M}(\mathcal{X})$ of all probability distributions on the set of types

$$\mathcal{M}(\mathcal{X}) = \left\{ p \colon \mathcal{X} \to [0, 1] \; \middle| \; \sum_{x \in \mathcal{X}} p(x) = 1 \right\}$$

A probability model \mathcal{M} is called **restricted** in all other cases

$$\mathcal{M} \subseteq \mathcal{M}(\mathcal{X})$$
 and $\mathcal{M} \neq \mathcal{M}(\mathcal{X})$

Maximum-Likelihood Estimates

Definition 6. Let f be a non-empty and finite corpus on a countable set \mathcal{X} of types. Let \mathcal{M} be a probability model on \mathcal{X} . The **probability of the corpus** allocated by an instance p of the model \mathcal{M} is defined as

$$L(f;p) = \prod_{x \in \mathcal{X}} p(x)^{f(x)}$$

An instance \hat{p} of the model \mathcal{M} is called a **maximumlikelihood estimate of** \mathcal{M} on f, if and only if the corpus f is allocated a maximum probability by \hat{p}

$$L(f;\hat{p}) = \max_{p \in \mathcal{M}} L(f;p)$$

Overview of Maximum-Likelihood and Relative-Frequency

