
Einführung in die statistische Sprachverarbeitung

Detlef Prescher

May 29, 2007

Hausaufgabe 8

Es sei die folgende einfache Baumbank gegeben:

Ferner sei:

- $f_{TB}(x)$ die Vorkommenshäufigkeit eines Baumes x in der Baumbank
- $\tilde{p}(x)$ die empirische Wahrscheilichkeit eines Baumes x in der Baumbank
- G die von der Baumbank abgelesene kontextfreie Grammatik
- \bullet \mathcal{X} die Menge aller Bäume der Grammatik G
- \bullet \mathcal{M}_G das Wahrscheinlichkeitsmodell der Grammatik G
- \bullet f(r) die Vorkommenshäufigkeit einer Regel r in der Baumbank
- $f_r(x)$ die Vorkommenshäufigkeit einer Regel r im Baum x
- (i) Zeige, dass $\tilde{p} \notin \mathcal{M}_G$. (Nimm an, dass $\tilde{p} \in \mathcal{M}_G$ und zeige, dass dies zu einem Widerspruch führt. Tip: Zeige zunächst, dass aus der Annahme folgt, dass alle Regelwahrscheinlichkeiten positiv sein müssen. Betrachte dann einen Baum von G, der NICHT in der Baumbank ist...)
- (ii) Ist \tilde{p} ein MLE von \mathcal{M}_G auf f_{TB} ? Begründe Deine Antwort.
- (iii) Berechne für die gegebene Baumbank alle Werte von f(r), $f_{TB}(x)$ und $f_r(x)$. Zeige, dass für alle Regeln gilt, dass:

$$f(r) = \sum_{x \in \mathcal{X}} f_{\mathsf{TB}}(x) \cdot f_r(x)$$

(iv) Seien f_A die Korpora aller Regeln mit jeweils der linken Seite A. Wähle eine beliebige Modellinstanz $p \in \mathcal{M}_G$ aus, und zeige, dass:

$$L(f_{\mathsf{TB}},p) = \prod_A L(f_A,p)$$

Diskutiere, ob dies für jede Instanz $p \in \mathcal{M}_G$ so sein wird.

(v) Beschreibe nun in Deinen eigenen Worten, warum Charniaks Baumbankgrammatik das eindeutige(!) MLE von \mathcal{M}_G auf f_{TB} sein wird.

Abgabetermin: Montag, 11. Juni

Besprechung: Mittwoch, 13. Juni