Tree-bank Grammars
Eugene Charniak

Department of Computer Science
Brown University

Providence, Rhode Island 02912

CS-96-02
January 1996

Tree-bank Grammars®

Eugene Charniak
Department of Computer Science, Brown University

January 5, 1996

Abstract

By a “tree-bank grammar” we mean a context-free grammar cre-
ated by reading the production rules directly from hand-parsed sen-
tences in a tree bank. Common wisdom has it that such grammars
do not perform well, though we know of no published data on the
issue. The primary purpose of this paper is to show that the common
wisdom is wrong. In particular we present results on a tree-bank gram-
mar based on the Penn Wall Street Journal tree bank. To the best of
our knowledge, this grammar out-performs all other non-word-based
statistical parsers/grammars on this corpus. That is, it out-performs
parsers that consider the input as a string of tags and ignore the actual
words of the corpus.

1 Introduction

The simplest way to “learn” a context-free grammar from a parsed corpus (a
“tree bank”), is to read the grammar off the parsed sentences. That is, if we
have the sentence diagrammed in Figure 1 we can read the following rules
off this diagram:

S — NP VP
NP — pron
VP — vb NP
NP — dtnn

*This research was supported in part by NSF grant TRI-9319516.

VP

NP NP

| N

pron vb dt nn

She heard the noise

Figure 1: A simple parsed entry in a tree-bank

We call grammars obtained in this fashion “tree-bank grammars.”

It is common wisdom that tree-bank grammars do not work well. T have
heard this from several well-known researchers in the statistical NLP com-
munity, and the complete lack of any performance results on such grammars
suggests that if they have been researched the results did not warrant publi-
cation. The primary purpose of this paper is to refute this common wisdom.
The next section does this by presenting some results for a tree-bank gram-
mar. Section 3 compares these results to prior work and addresses why our
results differ from what common expectations would predict.

The parser used in our experiments is, for the most part, a standard chart
parser. It does differ from the standard, however, in two ways. One is an
efficiency matter — we improved its ability to search for the most probable
parse. This is discussed briefly in section 3 as well. The second difference
is more unusual. From impressionistic evidence, we have come to believe
that standard PCFGs do not match English’s preference for right-branching
structures. In section 4 we present some ideas on how this might be corrected
and show how these ideas contribute to the performance results of section 2.

2 The Experiment

We used as our tree bank a preliminary version of the Penn parsed Wall
Street Journal text. We divided the sentences into two separate corpora,
about 30000 words for testing and about ten times that for training. We
ignored all sentences of length greater than 40 in the testing data. The

actual number of such sentences is quite low, as the overall average sentence
length is about 22 words and punctuation.

With the exception of the right-bracketing correction to be discussed later,
the training was particularly simple. We obtained a context-free grammar
(CFQG) by reading the rules off all the sentences in the training data. Trace
elements indicated in the parse where ignored. To create a probabilistic CFG,
a PCFG, we assigned a probability to each rule by observing how often each
rule was used in the training corpus. So, if r is a rule, let | 7 | be the number
of times r occurred in the parsed corpus and A(r) be the non-terminal that
r expands. Then the probability assigned to r is given by

|7 |
p(r) = (1)
Srelr | A=Ay |7

Originally we used as our set of non-terminals those specified in [6]. How-
ever, it was found that other non-terminals were used in the tree bank as well.
Two of these (ORD and PRT) we added to the grammar, but for the majority
we simply ignored any rule in which they occurred. It was also necessary to
add a new start symbol, S1, as many of the parses in our version of the tree
bank had the following form:

((S (NP The dog) (VP chewed (NP the bone))) .)

Note the topmost unlabeled bracketing with (in this case) two constituents,
the S and the final period. We handled such cases by labeling this bracket
S1.

We used the full set of Penn-tree-bank terminal parts of speech augmented
by two new parts of speech, the auxiliary verb categories aux and auxg. We
introduced these by assigning all occurrences of the most common aux-verbs
(e.g., have, had, is, am, are, etc.) to their respective categories.

The grammar obtained had 10,605 rules of which only 3943 occurred more
than once. We used all the rules, though we give some results in which only
a subset are used.

We obtained the most probable parse of each sentence using the standard
extension of the HMM Viterbi algorithm to PCFGs. We call this parse the
map (maximum a posteriori) parse. We then compared the map parse to the
one given in the tree-bank testing data. We measured performance by three
observations:

Sentence Average
Lengths Length Precision Recall Accuracy

2-12 8.7 88.6 91.7 97.9
2-16 11.4 85.0 87.7 94.5
2-20 13.8 83.5 86.2 92.8
2-25 16.3 82.0 84.0 90.8
2-30 18.7 80.6 82.5 89.5
2-40 21.9 78.8 80.4 87.7

Figure 2: Parsing results for the tree-bank grammar

1. precision: the percentage of non-terminal bracketings in the map parse
that also appeared in the tree-bank parse,

2. recall: the percentage of non-empty non-terminal bracketings from the
tree bank that also appeared in the map parse, and

3. accuracy: the percentage of bracketings from the map parse that did
not cross over the bracketings in the tree-bank parse.

The results obtained are shown in Figure 2.

At about eleven thousand rules, our grammar is rather large. We also
ran some tests using only the subset of rules that occurred more than once.
As noted earlier, this reduced the number of rules in the grammar to 3943.
Interestingly, this reduction had almost no impact on the parsing results, as
shown in Figure 3, which gives first the results for the full grammar followed
by the results with the 4000-rule subset. The differences are small.

3 Discussion

To put the experimental results into perspective it is useful to compare them
to previous results on Wall Street Journal data. Figure 4 compares the
accuracy figures for our tree-bank grammar with those of three earlier gram-
mars/parsers that also used Wall Street Journal text for testing purposes. We
compare only accuracy figures because the earlier work did not give precision
and recall figures.

Sentence Grammar

Lengths Size Precision Recall Accuracy

2-16 Full 85.0 87.7 94.5
Reduced 84.3 87.9 94.5

2-25 Full 82.0 84.0 90.8
Reduced 81.6 84.7 91.0

2-40 Full 78.8 80.4 87.7
Reduced 78.2 80.7 87.6

Figure 3: Parsing results for a reduced tree-bank grammar

100
A— The tree-bank grammar
A ® — The PCFG of 4]
0O — The transformation parser of [1]
© & — The PCFG of [7]
95+ A
A
DD A
90 © A
©
A
85— o
O
| | | |
10 15 20 25

Figure 4: Accuracy vs. average sentence length for several parsers

It seems clear that the tree-bank grammar outperforms the others, partic-
ularly when the average sentence length gets higher — i.e., when longer sen-
tences are allowed into the testing corpus, The only data point that matches
our current results is one for one of our earlier grammars [4], and then only
for very short sentences.

This is not to say, however, that there are no better grammars/parsers.
Magerman [5] reports precision and accuracy figures of 86% for WSJ sen-
tences of length 40 and less. The difference is that Magerman’s parser uses
statistics based upon the actual words of the sentence, while ours, and the
others shown in Figure 4 use only the tags of the words. Obviously this shows
the importance of including lexical information, a point to which we return
in the conclusion.

Next we turn to the discrepancy between our results and the prevailing
expectations. Roughly speaking, one can identify five reasons why a parser
does not identify the “correct” parser for a sentence.

1. the necessary rules are not in the grammar
2. the rules are there, but their probabilities are incorrect

3. the probabilities are correct, but the tag sequence by itself does not
provide sufficient information to select the correct parse

4. the information is sufficient, but because the parser could not consider
all of the possible parses, it did not find the correct parse,

5. it found the correct parse, but the the tree-bank “gold standard” was
wrong (or the correct parse is simply not clear).

Of these (3) and (5) are important but not relevant to the current dis-
cussion. Of the rest, we believe that (1) is a major component of the low
expectations for tree-bank grammars. Certainly it was our major concern.
Penn-style trees tend to be be rather shallow, and the 40-odd parts of speech
allow many possible combinations. For example, consider the NP “the $200
hat”, which has the tag sequence dt $ cd nn. Our tree-bank grammar does not
have the corresponding NP rule and thus could not assign a correct parse to a
sentence that contained this NP. For these reasons we gave some thought to
how new rules might be introduced and assigned non-zero probability. In the
event, however, no such complications proved necessary. First, our grammar

Sentence

Lengths Precision Recall Accuracy

2-16 Test Data 85.0 87.7 94.5
Training Data 88.3 89.5 94.0

2-25 Test Data 82.0 84.0 90.8
Training Data 86.9 85.1 91.5

2-40 Test Data 78.8 80.4 87.7
Training Data 83.3 81.8 88.4

Figure 5: Parsing results for the tree-bank grammar

was able to parse all of the test sentences. Second, it is not too hard to show
that coverage is not a first-order problem

In retrospect, our concerns about coverage were not well thought out
because of a second property of our tree-bank grammar, its extreme overgen-
eration. In particular, the following fact is true:

Let x be the set of the tree-bank parts of speech minus the fol-
lowing parts of speech: forward and backward single quote mark
(neither of which occurred in our corpus), sym (symbol), uh (in-
terjection), e (final punctuation), and). Any string in x* is a
legitimate prefix to a sentence in the language of our tree-bank-
grammar, and furthermore, any non-terminal may start immedi-
ately following x*.

In other words, our grammar effectively rules out no strings at all, and every
possible part of speech could start at almost any point in the sentence. The
proof of this fact is by induction on the length of the string and is straight-
forward, but tedious.

Of course, that our grammar comes up with some parse for a sentence
does not mean that it is immune to missing rules. However, we can show
that possible missing rules are not a first-order problem for our grammar by
applying it to sentences from the training corpus. This gives an upper bound
on the performance we can expect when we have all of the necessary rules
(and the correct probabilities). The results are given in Figure 5. Looking
at the data for all sentences of length less than or equal to 40 we see that

having all of the necessary rules makes little difference, particularly in recall
and accuracy (though why precision is affected so much more is an interesting
question).

We noted earlier that the tree-bank grammar not only overgenerates,
but places almost no constraints on what part of speech might occur at
any point in the sentence. This fact suggests a second reason for the bad
reputation of such grammars — they can be hard on parsers. We noticed
this in preliminary testing on the training corpus when a significant number
of sentences were not being parsed — this despite the fact that our standard
parser used a simple best-first mechanism. That is, the parser chooses the
next constituent to work on by picking the one with the highest “figure of
merit.” In our case this is the geometric mean of the inside probability of
the constituent.

Fortunately we have been also working on improved best-first chart pars-
ing, and we were able to use some new techniques on our tree-bank grammar.
We achieved the above performance using the following figure of merit for
a constituent N]’k , that is, a constituent headed by the :th non-terminal,
which covers the terms (parts of speech) t;... ¢4

p(N" | t—)p(tin | N)p(ti | NY)
p(tjns1)

P(Njg [ton) = (2)
Here p(t;k41) is the probability of the sequence of terms ¢; ..., and is esti-
mated by a tri-tag model p(,x | N') is the inside probability of N]’k and is
computed in the normal fashion (see, e.g., [3]) and p(N' | ¢t;_1) and p(tx | N?)
are estimated by gathering statistics from the training corpus.

It is not our purpose here to discuss the benefits of this particular figure
of merit (but see [2]). Rather we simply want to note the difficulty of obtain-
ing parses, and particularly, high-probability parses, in the face of extreme
ambiguity. It is possible that some of the negative “common wisdom” with
respect to tree-bank grammars stems from this source.

4 Right-Branching Corrections

Earlier we noted that we made one modification to our grammar/parser
other than the purely efficiency-related ones discussed in the last section.

This modification stemmed from our long standing belief that our context-
free parsers seemed, at least from our non-systematic observations, to tend
more toward center-embedding constructions than is warranted in English.
It is generally recognized that English is a right-branching language. For
example, consider the following right-branching bracketing of the sentence
“The cat licked several pans.”

((The (cat (licked (several pans)))) .)

While the bracketing starting with “cat” is quite absurd, note how many of
the bracketings are correct. This tendency has been exploited by Brill’s [1]
“transformational parser,” which starts with the right-branching analysis of
the sentence and then tries to improve on it.

On the other hand, context-free grammars have no preference for right-
branching structures. Indeed, those familiar with the theory of computation
will recognize that the language a”b"™, the canonical center embedded lan-
guage, 1s also the canonical context-free language. It seemed to us that
a tree-bank grammar, because of the close connection between the “gold-
standard” correct parses and the grammar itself, offered an opportunity to
test this hypothesis.

As a starting point in our analysis, note that a right-branching parse of a
sentence has all of the closing parentheses just prior to the final punctuation.
We call constituents that end just prior to the final punctuation “ending con-

7 and the rest “middle constituents.” We suspect that our grammar

stituents,
has a smaller propensity to create ending constituents that is warranted by
correct parses. If this is the case, we want to redress this bias.

The uncorrected probabilities that would lead to this bias are those as-

signed by the normal PCFG rules for assigning probabilities:

p(m) =] plrule(c)) (3)

cem

Here 7 is a parse of the tag sequence, ¢ is a non-terminal constituent of this
parse, and rule(c) is the grammar rule used to expand this constituent in
the parse. Assume that we observe our uncorrected parser making = percent
of the constituents ending constituents whereas the correct parses have y
percent, and that conversely it makes u percent of the constituents middle
constituents whereas the correct parse found v percent.

We hypothesized that one would find y > = and u > v. Furthermore it
seems reasonable to “correct” the probabilities to account for this bias by (in
the case of an ending constituent) dividing out by « to get an “uninfluenced”
version and then multiplying by the correct probability y to make the influ-
ence match the reality (and similarly for middle constituents). This gives the
following equation for the probability of a parse:

p(m) = Totoute(e) - f 57 20 0 et |)

v/u otherwise
cem

Note that the deviation of this equation from the standard context-free case is
heuristic in nature: it derives not from any underlying principles, but rather
from our intuition. The best way to understand it is simply to note that
if the grammar tends to underestimate the number of ending constituents
and overestimate middle constituents, the above equation will multiply the
former by y/x, a number greater than one, and the latter by v/u, a number
less than one.

Furthermore, if we assume that on the average the total number of con-
stituents are the same in for both the map-parse and the tree-bank parse
(a pretty good assumption), and that y and w (the numbers for the correct
parses) are collected from the training data, we need only collect one further
number, which we have chosen to be the ending-factor £ = y/x.

To test our theory, we estimated & from some held-out data. It came out
1.2 (thus confirming, at least for this test sample, our hypothesis that the
map-parses would underestimate the number of ending constituents). We
modified our parse probability equation to correspond to Equation 4. The
data we reported earlier is the result. If we do not use this correction we get
the “No correction” data shown here:

Precision Recall Accuracy

With correction 78.8 80.4 87.7
No correction 771 78.1 86.0
Difference 1.7 2.3 1.7

The data is for sentences of lengths 2-40. The differences are not huge, but
they are significant — both in the statistical sense and in the sense that
they make up a large portion of the improvement over the other grammars
in Figure 4. Furthermore, the modification required to the parsing algorithm
is trivial (a few lines of code), so the improvement comes nearly for free.

10

It is also interesting to speculate whether such a bias would work for gram-
mars other than tree-bank grammars. On the one hand, our basic arguments
that might lead one to suspect a problem with context-free grammars are
not peculiar to tree-bank grammars. On the other, mechanisms like count-
ing the percentage of ending constituents assume that the parser’s grammar
and that of the gold standard are quite similar, as otherwise one is comparing
incomparables. Some experimentation might be warranted.

5 Conclusion

We have presented evidence that tree-bank grammars perform much better
than one might at first expect and, in fact, seem to outperform other non-
word-based grammar/parsers. We then suggested two possible reasons for
the mistaken impressions of tree-bank grammars’ inadequacies. The first of
these is the fear that missing grammar rules will prove fatal. Here we observed
that our grammar was able to parse all of our test data, and by reparsing the
training data showed that the real limits of the parsers performance must lie
elsewhere (probably in the lack of information provided by the tags alone).
The second possible reason behind the mistaken current wisdom is the high
level of ambiguity of Penn tree-bank grammars. The ambiguity makes it
hard to obtain a parse because the number of possible partial constituents
is so high, and similarly makes it hard to find the best parse even should
one parse be found. Here we simply pointed to some work we have done
on best-first parsing and suggested that this may have tamed this particular
problem. Lastly we discussed a correction made to the probabilities of the
parses to encourage more right-branching structures and showed how this led
to a small but significant improvement in our results.

However, because of the informational poverty of tag sequences, we rec-
ognize that context-free parsing based only upon tags is not sufficient for
high precision, recall, and accuracy. Rather, we need to include lexical items
in the information mix upon which we base our statistics. Certainly the 86%
precision and recall achieved by Magerman [5] supports this contention. On
the other hand, [5] abjures grammars altogether, preferring a more compli-
cated (or at least, more unusual) mechanism that, in effect, makes up the
rules as it goes along. We would suggest that the present work, with its accu-
racy and recall of about 80%, indicates that the new grammatical mechanism

11

is not the important thing in those results. That is to say, we estimate that
introducing word-based statistics on top of our tree-bank grammar should be
able to make up the 6% gap. Showing this is the next step of our research.

References

1. BrILL, E. Automatic grammar induction and parsing free text: a transformation-
based approach. In Proceedings of the 31st Annual Meeting of the Asso-
ciation for Computational Linguistics. 1993, 259-265.

2. CARABALLO, S. AND CHARNIAK, E. Figures of Merit for Best-First
Probabilistic Chart Parsing. Brown Univeristy Technical Report, forth-
coming.

3. CHARNIAK, E. Statistical Language Learning. MIT Press, Cambridge,
1993.

4. CHARNIAK, E. Parsing with context-free grammars and word statistics.
Department of Computer Science, Brown University, Technical Report CS-
95-28, 1995.

5. MAGERMAN, D. M. Statistical decision-tree models for parsing. In Pro-
ceedings of the 33rd Annual Meeting of the Association for Computational
Linguistics. 1995, 276-283.

6. Marcus, M. P., SANTORINI, B. AND MARCINKIEWICZ, M. A. Build-
ing a large annotated corpus of English: the Penn treebank. Computational
Linguistics 19 (1993), 313-330.

7. PEREIRA, F. AND SCHABES, Y. Inside-outside reestimation from par-

tially bracketed corpora. In 27th Annual Meeting of the Association for
Computaitonal Linguistics. ACL, 1992, 128-135.

12

