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Abstract

State-of-the-art syntactic disambiguators for natural language employ ”Treebank Grammars”: prob-
abilistic grammars directly projected from annotated corpora (treebanks). Treebank Grammars
mark a paradigm shift from the manually constructed, a priori fixed linguistic grammars. In this
paper we show that for describing these systems in the framework of Statistical Estimation The-
ory one must assume an unbounded number of parameters. The unboundedness assumption of
Treebank Grammars expresses persistent uncertainty over the formal grammar of natural language.
We argue that embracing the unboundedness assumption also brings the justification of smoothing
techniques within the scope of Estimation Theory.

1 Introduction

A serious problem in Natural Language Processing is ambiguity. Formal grammars of natural languages
are usually designed to describe the complete set of syntactic possibilities that a language offers. They
tend to assign a large set of possible syntactic structures to virtually every utterance, although only
one of these would be perceived by a human language user. To resolve this ambiguity, a parser must be
able to rank the different analyzes of an utterance, and select one of them as the most plausible one. To
this end, natural language parsers use probabilistic grammars [14, 1, 4, 6, 3], which assign a probability
to every syntactic analysis they generate. Disambiguation decisions are then based on the probabilities
of the different alternative structures of an input utterance.

This paper discusses parsing/disambiguation systems which are based on probabilistic grammars.
In particular, it investigates how the rules and/or the probabilities of such grammars may be learned
from a treebank, i.e., from a corpus of utterances which have been annotated with ”correct” syntactic
structures. Since the early nineties, several systems have been developed which assume a grammar
formalism (i.e., the format for the grammar rules), and then learn the actual rules as well as their
probabilities from the corpus. Such systems may be said to learn a treebank grammar. Since their
estimator learn the whole grammar (rather than just the rule probabilities of a given grammar), they
deal with an infinite rule set: the set of all possible rules allowed by the grammar formalism. We will
call this infinite rule set an ”infinite grammar”, although this is dangerous terminology: in the parlance
of theoretical linguistics, finiteness is considered an essential property of grammars. Clearly, this is a
non-trivial extension. Though the ”infinite grammars” which are learned by implementable estimators
are necessarily representable by finite means, there does not need to be a finite bound on the size of
this representation.

We will show that treebank grammars based on sufficiently rich grammar formalisms can approxi-
mate arbitrary parse-tree probability distributions arbitrarily closely. But this power has a cost: if we
allow the training corpus to grow indefinitely, the grammar that is learned may also grow arbitrarily
large.

We conclude the paper by discussing the well-known ”sparse data problem” in the context of natural
language parsing. As we know from Zipf’s law, new words, new categorizations of existing words, and
new syntactic combinations should keep appearing as the corpus grows. This implies that probability
estimation by means of frequency counts will never be an adequate predictor for future utterances. To
deal with this problem, existing systems employ techniques for smoothing their probability estimates:
they reserve probability mass for the unseen events and redistribute this mass on the basis of various
heuristics [8, 13, 11]. To justify smoothing techniques in the framework of Estimation Theory, we need



precisely the generalization that we introduced before: smoothing is concerned with estimating the
values for an infinite dimensional parameter vector.

Before we discuss these matters in more detail, the next section introduces some basic concepts about
formal and probabilistic grammars, and it reviews the current practice in treebank-based probabilistic
parsing.

2 Current Practice in Corpus-Based NLP

The first subsection below describes, in very general terms, the kind of grammar formalisms being
used in probabilistic parsing/disambiguation systems. The second subsection then gives an informal
impression about the way in which the rules and/or probabilities of such grammars are learned from
treebanks. More precise investigations of that issue constitute the topic of the rest of the paper.

2.1 Probabilistic Grammars
Probabilistic grammars are based on rewrite grammars. In particular, many are based on Context-Free
Grammars (CFGs). A CFG is a tuple 〈N ,W ,R, S〉, where N and W are disjoint finite sets of non-
terminal and terminal symbols, respectively; S ∈ N is a distinguished start symbol, and R is a finite
set of productions, of the form A → β, where α ∈ N and β is a sequence of elements from N ∪ W .
A CFG defines a rewrite system, where S is rewritten, in consecutive steps, using the productions; at
each step the result of rewriting is a sequence of symbols from N ∪W . Such a rewrite process, called a
derivation, terminates when the resulting sequence consists of only terminal symbols; such a sequence
is called a sentence of the language generated by the grammar.

The graphical representation of a CFG-derivation is at the same time the parse-tree of the sentence.
In other grammar formalisms, such as Tree-Substitution Grammars (TSGs) and Tree-Adjoining Gram-
mars (TAGs) [10], the one-to-one correspondence between sentence structure and derivation structure
is given up. Grammars of this sort resemble CFGs, with one important difference: the rewrite process
explicitly generates parse-trees rather than symbol sequences. The production rules now consist of a
non-terminal symbol on the left hand side of the arrow, and a an elementary-tree on the right hand side;
the rule specifies that the rewrite process may select a node which is labeled with this non-terminal,
and expand it into a copy of this tree.

A Probabilistic CFG (PCFG) extends a CFG with a probability function π : R → [0, 1], which assigns
to each production a probability value. The probability of derivation r1, . . . , rn, involving productions
∀i : ri ∈ R, is calculated under an independence assumption between the individual productions, i.e.
p(r1, . . . , rn) =

∏n

i=1 π(ri). The probability of a sentence u (p(u)) is given by the sum of the probabilities
of all derivations that generate u.

Like PCFGs, Stochastic TSGs (STSGs) and Stochastic TAGs (STAGs) extend their conventional
counterparts with a probability function over the productions (elementary-trees). Note, however, that
these formalisms allow multiple derivations of the same parse-tree. Hence, the probability of a parse-tree
t, p(t), is now the sum of the probabilities of the derivations that generate t.

2.2 Treebank grammars and Language Models
Two issues play a role in how probabilistic grammars are actually built (1) the way the symbolic
grammar is obtained, (2) how the probabilities of the grammar productions are estimated from an
actual corpus. The earliest probabilistic parsing systems concentrated on estimating the probabilities
of the productions of broad-coverage, linguistically motivated, manually constructed grammars e.g. [7].
In contrast, state-of-the-art approaches e.g. [15, 2, 4, 6] have abandoned the broad-coverage linguistic
grammars for the sake of so-called treebank grammars (a term coined by Charniak [4]). The characteristic
property of a treebank grammar is that its rules are projected directly from a corpus consisting of a
sample of utterances that are manually annotated with the correct syntactic structures (a so-called
treebank). See the example in Figure 1.

When seen from a broader perspective than parsing, treebank grammars were inspired by the sta-
tistical corpus-based approaches that underly Statistical Language Models (SLMs) that are so prevalent
in speech-recognition [9]. In its purest form, a statistical language model stands for a probability distri-
bution over a set of sequences of words (utterances). This statistical notion can be seen as an extension
of the formal notion of a language, i.e. a set of utterances. In speech-recognition, a language model
employs a probabilistic regular grammar (Finite State Automaton) where the probability of every word
is conditioned on the preceding words in the utterance, i.e. a so called Markov grammar. Markov
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Comments: Suppose the upper (lower) tree occurs 3 (resp. 7)
times in the treebank. The relative frequency estimate for the
productions extracted from this treebank would be: π(r1) = 1.0,
π(r2) = 1.0, π(r3) = 0.7, π(r4) = 0.5, π(r5) = 0.3 and π(r6) = 0.5.
Note that the counts of a production A → α is normalized by
the total count of productions with left hand side symbol A, e.g.
π(r4) = frequency(r4)

frequency(r4)+frequency(r6)
.

Figure 1: (left) A treebank, (right) The treebank CFG (see comments).

grammars can be seen as the first treebank grammars; an nth-order Markov grammar is obtained by
collecting from a large corpus all the (n+1)-grams together with their frequency counts.

This paper studies Treebank and Corpus-based Grammars from the point of view of statistical
Estimation Theory. We shall see that a satisfactory account of the treebank grammar approach requires
some changes in this theory.

3 Standard Estimation Theory

Our basic setting is a random experiment with an underlying sample space and a probability measure p.
A random experiment is an experiment whose outcome cannot be predicted with certainty. A random
variable X is as a measurement in the context of the random experiment; it is random in the sense
that its value depends on the outcome of the experiment. Each time the experiment is run, an outcome
of the experiment occurs, and X takes on a value x ∈ S. The range S of X is called the sample
space of X . Assuming that S is countable, X is a discrete variable characterized by its probability
distribution pX : S → [0, 1], where pX(x) := p(X = x) for all x ∈ S. Finally, we assume that X ’s
distribution is parameterized, i.e., dependent on some parameters, i.e., non-random quantities in the
random experiment that, once chosen, remain constant. In most cases, (one or more of) the parameters
are unknown, and must be estimated from the outcome vector X .

Random Samples, Statistics, and Estimators Let X1, . . . , Xn be independent random variables
with the same distribution as the variable X from the above setting. Then 〈X1, . . . , Xn〉 is called a ran-
dom sample of X . The outcome of the variables in a particular trial, 〈x1, . . . , xn〉, is called an observation
sequence. A statistic is a random variable derived from the random sample 〈X1, . . . , Xn〉. Examples for
statistics are the sample mean Xn = 1

n

∑n

i=1 Xiand the sample variance s2
n = 1

n−1

∑n

i=1(Xi − Xn)2 .

Guessing the distribution of X from an observation sequence involves assumptions on what kind of
distributions are admissible. More formally, estimation is based on a model M—the set of admissible
distributions. The ‘true’ distribution to be estimated from the observation sequence is assumed to be
an instance of M. In standard estimation theory, the model M is often characterized by a set Θ ⊆ R

k

of parameter vectors, such that there is a one-to-one correspondence between Θ and M. An example
is the model of all Gaussian distributions, where each distribution is characterized by the parameters
〈µ, σ〉 ∈ R × R+ (µ being the distribution’s expected value and σ its standard deviation). The process
of estimation can now be described in terms of parameters. Let pθ be the distribution corresponding
to parameter vector θ ∈ Θ and θ∗ the parameter vector of the “true” distribution pX = pθ∗ .

An estimator estn of θ∗ is a statistic from the random sample 〈X1, . . . , Xn〉 whose range is Θ. Thus,
the estimator is a random variable with a distribution, an expected value, and so on. The observed
value estn (〈x1, . . . , xn〉) of the outcome of a particular random experiment is called the estimate of θ∗

from the observations 〈x1, . . . , xn〉. For example, the prominent maximum-likelihood method aims at

maximizing the probability of the observation sequence: θ̂ = arg maxθ

∏n

i=1 pθ(xi). If such an estimate

θ̂ exists for each possible observation sequence, the corresponding statistic θ̂(〈X1, . . . , Xn〉) is called a
maximum-likelihood estimator of θ∗.

Properties of Estimators in Standard-Estimation Theory When investigating the properties
of estimators, all distributions p ∈ M that could underly X are considered. This means that X is
distributed according to a distribution pθ depending on a parameter vector θ ∈ Θ. In other words, we
implicitly assume in the following that pX = pθ.

Bias and Consistency. The (random) error is the difference between the estimator and the parameter
vector: estn − θ. The expected value of the error is known as the bias : biasθ (estn) = E (estn − θ). If



biasθ (estn) = 0 (i.e., E (estn) = θ) for all θ ∈ Θ, then estn is said to be unbiased. We also expect our
estimators to improve, in some sense, as n increases. As the quality of an estimator can be measured
by a loss function (e.g. by lossθ (estn) = ||estn − θ||2), a sequence of estimators is called consistent if
for each θ ∈ Θ, the expected loss approaches zero as n goes to infinity: limn→∞ E (lossθ (estn)) = 0.

Minimal Sufficiency. An estimator is a statistic with the parameter space Θ as its range. A statistic
U = h(X1, . . . , Xn) is called sufficient for a parameter θ if U contains all of the information about θ that
is available in the entire random sample1. Obviously, the entire random sample is trivially sufficient.
There is, however, usually a statistic U that is sufficient and has a smaller dimension, so that we can
achieve real data reduction. Naturally, we would like to find the statistic U that has the smallest
dimension possible.

In summary, standard estimation theory assumes that: (1) the parameter space is finite-dimensional,
(2) the true distribution is in the model, and (3) estimation is/should be based on minimal sufficient
statistics. In the following sections, we investigate whether these assumptions hold for treebank gram-
mars.

3.1 The Parameters of Probabilistic Parsing

Comments: Both STSGs generate the same parse dis-

tribution {〈t1, 0.5〉, 〈t2, 0.5〉}. (Note that the left STSG

generates t2 in two different derivations each contribut-

ing 0.25 to its probability: (1) (S→ A a→ a a) and

(2) combine (S→ A a) with (A→a a).

Figure 2: Two STSGs generating same parse distribution. See comments.

In order to describe the learning of probabilistic parsers from an Estimation Theory perspective,
we first need to pin down the parameters that are being estimated. In general, probability estimation
from a corpus is used for two tasks: (1) estimating the production probabilities of an a priori fixed
probabilistic grammar, or (2) estimating a probability distribution over parses. In the first case, the
actual parameters are the production probabilities, while in the latter these are the parse probabilities.
Remarkably, for estimating a certain probability distribution over parses one could employ different
(kinds of) probabilistic grammars as shown in Figure 2. Hence, the two tasks, estimating a probabilistic
grammar or estimating a parse distribution, are not necessarily equivalent.

What is then the appropriate kind of parameters for ambiguity resolution? Note that the role of
the probabilities is to rank the different parses in order to facilitate the selection of the most probable
one. Clearly, if we had access to estimates of parse probabilities (a parse distribution), we would have
sufficient means for disambiguation. Hence, the parameters that are subject to estimation should be
parse probabilities.

Note that for estimating production probabilities one must pin down a target probabilistic grammar
prior to estimation. Pinning down the grammar prior to estimation implies a very strong assumption:
the chosen grammar reflects the exact nature of natural language syntax. Clearly, this assumption does
not always hold for existing formal grammars. If parse probabilities are the subject of estimation, why
then does existing work in NLP highlight the estimation of production probabilities?

The reason is quite simple: the direct estimation of parse probabilities implies an infinite dimensional
vector of parameters, i.e. the parses. This does not go well with Estimation Theory, which assumes
a finite dimensional parameter vector (〈θ1, . . . , θn〉). Work on probabilistic parsing tackles this infinity
by assuming that a known probabilistic grammar, with a finite set of productions, generates the parse
distribution. Let be given a set of parses T over finite sets of nonterminal N and terminal W symbols.
If we assume now that the set of parses T is generated by a grammar G= 〈N ,W ,R, S〉, e.g. a CFG,
then each parse t is generated by a G-derivation. For a given treebank T1, . . . , Tx, the Likelihood under
a parse probability function p is given by L(T1, . . . , Tx, p) =

∏x

i=1 p(Ti). If for all 1 ≤ i ≤ x, Ti is
derived by some derivation r1, . . . rn, then p(Ti) =

∏n
j=1 π(ri). Therefore, the commonly used estimator,

the Maximum-Likelihood of a treebank, simply reduces to the Maximum-Likelihood over a “corpus of

1Sufficiency is related to the concept of data reduction: If we can find a sufficient statistic U taking values in a
m−dimensional space, then we reduced the original data vector 〈X1, . . . , Xn〉 (whose dimension n is usually large) to the
statistic U (whose dimension m is usually much smaller) with no loss of information.



independent grammar productions”. This means that under the assumption that a given probabilistic
grammar generates the distribution over T , estimating the production probabilities of this grammar
will also yield parse estimates. The question is, of course, whether the assumption of knowing the
grammar productions is a reasonable one for natural language parsing? As we see in the sequel, this
assumption has been found to be too strong for dealing with various problems, and a different approach
has emerged, Treebank Grammars.

There are a few important realizations that arise in this section: (1) the actual goal is to estimate
a (possibly) infinite parse distribution (of which the treebank is a finite sample), (2) by assuming that
a given grammar generates the parse distribution, a structure is imposed on the infinite dimensional
parse-space such that the dimension of the parameter vector is reduced to a finite dimension (the number
of grammar productions).

4 Treebank Grammars and Estimation Theory

The common feature of treebank-based approaches to stochastic parsing is that they do not assume
an a priori grammar, but learn a treebank grammar from a corpus. In what follows, we confront
treebank-based approaches to stochastic parsing with estimation theory. We briefly review so-called
Data-Oriented Parsing (DOP), one of the earliest and most radical approaches to treebank grammars:
it suggests using an annotated corpus directly as a stochastic grammar [15]. After reviewing DOP, we
point out the incompatibilities between DOP and Estimation Theory as a starting point for our further
discussion concerning other treebank grammar approaches.

Data-Oriented Parsing Like other treebank models, DOP acquires from a treebank TB a finite
set F of productions, called fragments2 or subtrees, together with their probability estimates. An
important feature of DOP is that the set F consists of all fragments of the treebank trees. The set of
fragments F is employed as an STSG with the same start symbol, nonterminal and terminal sets as
the treebank trees (see section 2 for STSGs). Like other STSGs, a DOP grammar is based on fragment
probabilities that allow the calculation of derivation and parse probabilities:

Fragment probability : To each t ∈ F , a real number π(t) ≥ 0 is assigned, such that for non-terminal
label A, π induces a probability distribution on the set of fragments t whose root label root(t) is A.
I.e.:

∑

t : root(t)=A π(t) = 1.

Derivation and Tree probabilities : The probability of a derivation d of a parse-tree x is the product of
the fragment probabilities in d, and the probability of a parse-tree x with a set of derivations D(x) is
the sum of the probabilities of all derivations in D(x):

(1) p(d) =
∏

t∈F

π(t)ft(d) (2) p(x) =
∑

d∈D(x)

p(d)

where ft(d) is the number of times the fragment t occurs in the derivation d.

Estimation Theory and DOP Recall that the focus of estimation for parsing is a probability
distribution over parses. The statistics employs a corpus, that has been generated in accordance with
some unknown probability distribution, in order to infer that distribution.

Given a probability model comprising several distributions which might have generated the corpus,
an estimation method selects one instance of the probability model as its best guess about the original
distribution. From the perspective of DOP, a probability model simply bundles specific probability
distributions on the set X of derivable parse trees, where each model instance p is induced by a function
π on a given set F of tree fragments such that the equations (1) and (2) are satisfied. In other words,
a DOP model is defined on the basis of a given set F of tree fragments such that

MDOP(F) =







p ∈ M(X )

∣

∣

∣

∣

∣

∣

∃π such that ∀x ∈ X : p(x) =
∑

d∈D(x)

∏

t∈F

π(t)ft(d)







Moreover, given such a DOP model, an estimator estn for this model can be described as a statistic
from a random sample 〈X1, . . . , Xn〉, having the DOP model as its range. In other words, an observed

2A connected subgraph of a treebank tree t is called a fragment iff it consists of one or more context-free productions.



value estn (〈x1, . . . , xn〉) of this estimator is an instance of MDOP(F), thereby estimating this model
instance by exploiting the corpus 〈x1, . . . , xn〉. This result can be expressed by:

〈x1, . . . , xn〉 7−→ estn (〈x1, . . . , xn〉) ∈ MDOP(F)

To study the asymptotic behavior of DOP, we will now investigate a sequence est1, est2, est3, . . . of DOP
estimators. Starting with an example, the following figure displays the parse trees that are derivable
by the context-free grammar with the rules S → SS and S → a.

x1 : S

a

x2 : S

S

a

S

a

x3 : S
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S

S
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et cetera

From the perspective of DOP, however, each context-free grammar is a DOP grammar. Each CFG rule
can be interpreted as a local tree, and the set F of tree fragments of the DOP grammar simply consists
of these local trees. In our example, F consists of the two fragments:

x1 : S

a

and S

S S

From the perspective of estimation theory, we are now assuming that a model instance of this DOP
grammar is used for sampling. Then the specific corpus 〈x1, . . . , xn〉 is clearly one of the possible
observations of the random sample 〈X1, . . . , Xn〉. The crucial point is now that the set of fragments
that are read off from 〈x1, . . . , xn〉 includes fragments that are not in F — at least if we assume that
the corpus size n is big enough. Here, we check e.g. for n ≥ 2 that

S

S S

a

S

S

a

S

x2 : S

S

a

S

a

are not fragments of the DOP grammar that generated the corpus. There is nothing special in the given
example that stops us from generalizing this finding:

By assuming that the treebank is sampled from a DOP grammar that is interesting enough, i.e.,
that can be used to derive an infinite number of trees, then one aspect of the asymptotic behavior
of DOP estimation is that the symbolic DOP grammar grows as the treebank grows. As an effect,
in the limit of the treebank size, DOP risks learning an arbitrarily large grammar.

Although it is obvious that this phenomenon does not occur for simpler grammar formalisms (like
PCFGs and probabilistic finite-state automata), we conjecture that it also occurs for other higher-
order treebank grammars (like unification-based grammar formalisms). We think also that there is a
connection to the task of estimating a priori grammars in the framework of unsupervised learning.

Summarizing the results of this section, we started out by learning tree distributions, and we find
out that treebank grammars are indeed doing so. A surprise is, however, that DOP learns an arbitrarily
large grammar (in the limit). We conjecture, however, that this is a more general problem for other
kinds of treebank grammars. As we will point out in the next section, this is an extreme case of other
common phenomena in Natural Language Processing.

4.1 Related Corpus-based Methods

As we have seen, theoretically speaking, DOP aims at estimating the probabilities of an infinite dimen-
sional parameter vector. This implies that DOP estimation is incompatible with Estimation Theory. In
this section we will show that this is not unique for DOP; other commonly used corpus-based methods
based on Markov Models and other treebank grammars employ smoothing techniques that have the
same property: they all assume an infinite grammar.

A common problem in speech and language processing is the problem of “unknown words”, i.e.
words that have not occurred in the training corpus. As the corpus grows, novel words will occur all
the time. Open category words, such as proper nouns and compound nouns, are a common problem,
but even novel verbs are made up on the fly all the time (e.g. “googling someone” for searching on the
web). The situation is more severe with languages with rich morphology (e.g. Arabic or Turkish). The



problem of unknown words has been linked to Zipf’s law [16]: there is always a considerable tail of very
low frequency phenomena to be expected to occur in the future. This problem has major consequences
for the estimation of production probabilities, because one cannot determine the finite set of allowed
words (terminal symbols) a priori to estimation.

For language models based on Markov processes over word sequences (e.g. Hidden Markov Models
for speech-recognition) [9], it is not possible to fix a finite set of parameters (bigrams or trigrams).
Therefore, Markov Grammars are usually obtained directly from a large corpus (n-grams together with
their estimates). Theoretically speaking, we must assume an infinite dimensional parameter vector if
we are to explain the asymptotic estimation properties of the corpus-based Markov models.

We may stretch the unknown word problem one step further to unknown category words, i.e. words
for which some part-of-speech tag categories are not in the corpus. Similarly, unknown productions
could occur: in the well-known Penn Wall Street Journal treebank [12] many productions occur only
once, hinting at the fact that other novel productions are likely to occur in new utterances.

The problem of the “unknown events” constitutes the smallest common deviser for all language
(and other) modeling activities. Various smoothing techniques have been developed for dealing with
this problem, see [5]. These smoothing techniques are used as follows: 1. Estimate the parameters of a
(finite) grammar, including a special symbol UNKNOWN, a category of unknown events, 2. Use a mapping
from a word to itself if it is known, or else to the UNKNOWN category, and 3. Reserve and distribute
probability mass to the map into UNKNOWN. Theoretically speaking, the second step (the mapping) can
only be described by an infinite set of rules that maps a novel word to its UNKNOWN.

5 Discussion and conclusion

As we have seen in the two preceding sections, it seems necessary and reasonable to lift certain restric-
tions on the grammar assumed to generate a natural language. Recall that for an ordinary CFG (cf.
Section 2), the nonterminals N , terminals W , as well as the productions R are required to be finite
sets. Which finiteness-restrictions should we abolish to fit the treebank models?

In Section 5, we observed that the number of productions (subtrees) of DOP treebank grammars
may increase as training treebank size increases. In the limit, DOP then seems to estimate a infinite
grammar; however, so far we were not able to express this behavior in a formal way. Allowing for R to
be a countable set enables the generation of new tree distributions. Thus, the model MDOP(R) (where
the productions R are a (countable) set of DOP fragments) can now be chosen much richer. Consider
the special case that R is chosen as the set of all fragments from a given countable set T of full parse
trees. Then, given a DOP estimation method 〈esti〉i∈IN+

, the following desirable property holds:

For any infinite sequence 〈ti〉i∈IN+
of observations ti ∈ T , if the corresponding sequence

〈esti (〈t1, . . . , ti〉)〉i∈IN of DOP estimates converges to a probability distribution, then that
distribution is an instance of the model MDOP(R).3

Furthermore, the increased generality of MDOP(R) now allows estimators to learn tree distributions
that could not be learned before, simply because they were not allowed to be generated due to the
finiteness condition on the productions of the underlying grammar.

Another problem we encountered in Sections 5 and 6 was the handling of unknown words. Firstly,
with growing training data, previously unseen words are bound to occur and keep occurring. No finite
a-priory set of terminals can account for this. Secondly, smoothing techniques used in state-of-the-art
statistical language modeling implicitly make use of an infinite number of unknown-word productions.
Defining both W and R as countable sets prepares the grounds for a proper formal treatment of these
phenomena.

In certain grammar formalisms, also a countable set of nonterminals could be desirable. If W , N
and R are allowed to be countable, the resulting set of utterances will also be countable, since the
set of possible derivations from the grammar—finite sequences of rules, i.e., of tuples over W ∪N—is
countable.

In light of the discoveries made in the preceding sections it is intriguing to review the development
of probabilistic parsing. Early work on the estimation of parse distributions from treebanks started out
by introducing grammar formalisms in order to avoid working with an infinite number of parameters.
State-of-the-art treebank grammars adopted this strategy but, from a theoretical perspective, end up

3This is true because MDOP(R) is then identical to the set of all probability distributions over T .



again with an infinite number of parameters (although all actual models only deal with a finite number
of parameters).

The main explanation for this seemingly circular development is that the kind of grammars that
are suitable for capturing natural language syntax are far more complex than any existing formal
grammars. The fact that language is a continuously and rapidly evolving phenomenon raises a question
as to whether any a priori fixed, finite grammar will be able to approximate language syntax (including
phenomena as unknown words). From this perspective, it seems that the treebank grammar approach,
together with smoothing techniques, can be seen as an efficient solution for this problem.
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