
Inducing Head-Driven PCFGs with Latent Heads:
Refining a Tree-Bank Grammar for Parsing

Detlef Prescher

Institute for Logic, Language and Computation,
University of Amsterdam

prescher@science.uva.nl

Abstract. Although state-of-the-art parsers for natural language are lexicalized,
it was recently shown that an accurate unlexicalized parser for the Penn tree-bank
can be simply read off a manually refined tree-bank. While lexicalized parsers
often suffer from sparse data, manual mark-up is costly and largely based on
individual linguistic intuition. Thus, across domains, languages, and tree-bank
annotations, a fundamental question arises: Is it possible to automatically induce
an accurate parser from a tree-bank without resorting to full lexicalization? In
this paper, we show how to induce a probabilistic parser with latent head infor-
mation from simple linguistic principles. Our parser has a performance of 85.1%
(LP/LR F1), which is as good as that of early lexicalized ones. This is remarkable
since the induction of probabilistic grammars is in general a hard task.

1 Introduction

State-of-the-art statistical parsers for natural language are based on probabilistic gram-
mars acquired from tree-banks. The method of acquiring a probabilistic grammar from
the tree-bank is of major influence on the accuracy and coverage of the statistical parser.
It turns out that directly acquiring the probabilistic grammar from the tree-bank results
in a suboptimal statistical parser [1]. Thus, various linguistically motivated transforma-
tion techniques have been applied to the tree-bank trees, all of them gathering impor-
tant local information at the context-free production level. Two major transforms are
currently used in the literature: Parent encoding and lexicalization ([2], [3], [4], [5], [6],
etc.). Parent encoding appends the parent label to the tree nodes. Lexicalization labels
every node with the head word. These transforms have been specifically developed for
English based on the linguistic intuition that the original tree-bank annotations are not
refined enough to capture the various lexical and contextual influences that could im-
prove parser performance. It turns out, however, that these transforms do not carry over
across different tree-banks for other languages, annotations or domains ([7], [8]), and
even parsing English relies on some sophisticated further refinements [9]. Finally, all
lexicalized models we are aware of have to incorporate smoothing and pruning tech-
niques to solve a serious sparse-data problem (cp. Section 2).

Recently, [10] showed that a carefully performed linguistic mark-up leads to almost
the same performance results as lexicalization (both combined with parent encoding).
This result is attractive since unlexicalized grammars are easy to estimate, easy to parse
with, and time- and space-efficient. Furthermore, linguistic annotations orthogonal to

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 292–304, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Inducing Head-Driven PCFGs with Latent Heads 293

lexicalization could presumably be used to benefit lexicalized parsers as well. A draw-
back of [10]’s method is, however, that their manual linguistic mark-up is not based on
abstract rules but rather on individual linguistic intuition, which makes it difficult to re-
peat their experiment and to generalize their findings for languages other than English.

In this context, it is thus important to answer the following question: Is it possible
to automatically induce a more refined probabilistic grammar from a given tree-bank
with improved performance? Our answer is yes, and the resulting parser is located in
the middle of two extremes: a fully-lexicalized parser on one side versus an accurate
unlexicalized parser based on a manually refined tree-bank on the other side. In greater
detail, our induction method uses the same linguistic principles of headedness as other
methods: We do believe that lexical information represents an important knowledge
source. Simply percolating lexical information including the words, however, leads to
data sparseness. Various advanced linguistic theories (e.g. Lexical-Functional Gram-
mar [11]) suggest that more abstract categories based on feature combinations could
represent the lexical effect. Our main assumption is based on these theories but com-
plemented by a learning paradigm: Lexical entries carry latent extra information, and
the combinations of POS tags and extra-information serve as partly hidden head ele-
ments of a probabilistic grammar to be induced from the tree-bank. It is important to
emphasize that our task is to automatically induce a more refined probabilistic grammar
based on a few linguistic principles. With automatic refinement it is harder to guaran-
tee improved performance than with manually tailored refinements [10] or with refine-
ments based on direct lexicalization [6]. However, if the induced refinement provides
improved performance then it has a clear advantage: it is automatically induced, which
gives the hope that it will be applicable across different domains, languages and tree-
bank annotations.

In this paper we study the utility of a well-known statistical learning algorithm,
the Expectation-Maximization (EM) algorithm [12] for the refinement of probabilistic
grammars. Because we work with Probabilistic Context-Free Grammars (PCFGs), we
specifically employ the Inside-Outside version of the EM. Applying our method to the
benchmark Penn tree-bank Wall-Street Journal (WSJ), we obtain a refined probabilis-
tic grammar that significantly improves over the original tree-bank grammar and that
shows performance that is on par with early work with lexicalized probabilistic gram-
mars that were obtained using a direct transform. This is a remarkable result given the
hard task of automatic induction of improved probabilistic grammars.

2 Head Lexicalization

As previously shown ([2], [3], [4], etc.), Context-Free Grammars (CFGs) can be trans-
formed to lexicalized CFGs provided that a head-marking scheme for rules is given.
The basic idea is that the head marking on the rules is used to project lexical items up a
chain of nodes. One of the simplest approaches to lexicalization is the one of [13]. It is
characterized by the following transformation of the original tree-bank CFG.

Definition. The set T of terminal symbols of the original CFG and of its transform are
identical. The non-terminal symbols of the transform have the form X [v] or <Y<X [v]>>.

294 D. Prescher

Here, X and Y are two arbitrary non-terminal symbols of the original CFG, and v is
an arbitrary head chosen from a finite set H of head symbols. The set of rules of the
transformed CFG consists of the following types:

Lexicalized starting rules: For all heads v ∈ H (where ROOT is a new start symbol
and S is the original one):

ROOT → S[v]

Lexicalized rules: For all heads v ∈ H and for all rules X → . . .Xi−1 Xi Xi+1 . . .
of the original CFG (with a head marker on the child Xi):

X [v] → . . . <Xi−1<X [v]>> Xi[v] <Xi+1<X [v]>> . . .

Lexicalized grammatical relations: For all new non-terminal symbols <Y<X [v]>> and
for all heads w ∈ H:

<Y<X [v]>> → Y [w]

Lexical rules: For all lexical rules X → w of the original CFG:

X [h(w)] → w

Fig. 1. Original context-free tree (Note: One word was replaced earlier by the unknown-word
symbol ‘[unknown]’).

Fig. 2. Transformed tree: Lexicalization with leaf nodes of the original tree. The nodes
<cat1<cat2[head]>> are auxiliary nodes which have been introduced to model the lexicaliza-
tion of rules independently from the lexicalization of grammatical relations [13]. Additionally,
auxiliary nodes reduce the sparse-data problem.

Inducing Head-Driven PCFGs with Latent Heads 295

Fig. 3. Transformed tree: The same model but with lexicalization performed with POS tags

Here, h : V → H is a many-to-one function mapping a non-terminal w ∈ V to its
head symbol h(w) ∈ H (e.g. to the word itself or to the lemma of the word). Figure 2
displays the result of this transformation for one of the trees of the training section of
the Penn tree-bank. Compared to the original tree in Figure 1, it is note worthy that the
lexicalized tree has more nodes than the original tree: for each non-head daughter cat1
of a mother node cat2 in the original tree, a new node <cat1<cat2[head]>> is introduced
in the lexicalized tree. We call these extra nodes auxiliary nodes. The main reason for
introducing them is simply that one does not want to lexicalize rules with more than
one head (otherwise, it would be difficult to overcome the arising sparse-data problem).
Note also that standard-probabilistic conditioning of the lexicalized rules results simply
in conditioning the unlexicalized rules on a lexical head, such as in:

p(NP[article] → <DT<NP[article]>> NN[article] | NP[article])
=
p(NP → DT NN | NP, article)

One problem of head-lexicalization techniques is that they lead to serious sparse data
problems. For the standard case h(w) = w, for example, the large number |T | of full
word forms makes it difficult to reliably estimate the probability weights of the O(|T |2)
lexicalized grammatical relations and O(|T |) lexicalized rules of the model of [13].
An obvious approach to the problem is to use lemmas instead of full word forms to
decrease the number of heads. From a computational perspective (but of course not
from the linguistic one) the sparse data problem can be solved if part-of-speech tags are
used as heads since the number of POS tags is tiny compared to |T |. Figure 3 displays
the result of this type of transformation. Although we will demonstrate that parsing
results benefit from this naive lexicalization routine, we expect that (computationally
and linguistically) optimal head-lexicalized models are arranged around a number |H|
of head symbols such that |POS| ≤ |H| << |T |, where POS is the set of POS tags
and T is the full-word-form lexicon.

296 D. Prescher

Fig. 4. Head-lexicalized tree with hidden information mark-up: In addition to the part-of-speech
information, the terminal nodes carry extra-information (like m7, m10, m4, etc.). This satis-
fies principle (iii). The possible combinations of part-of-speech tags and extra-information (e.g.,
[NNP][m7], [NNP][m10], [IN][m4], etc.) serve as the new head elements of a head-lexicalized
CFG, because the combined information is projected up a chain of categories. This satisfies prin-
ciples (i) and (ii). The extra-information of the lexical items is hidden since it is not annotated in
the Penn tree-bank. Therefore, the information mark-up is highly ambiguous, and there are many
more (differently marked-up) trees beside the displayed tree.

3 Modeling Hidden Head-Information

This section defines probability models over the trees licensed by a lexicalized CFG
with hidden head-information, thereby exploiting three simple linguistic principles:

(i) all rules have head markers,
(ii) information is projected up a chain of categories marked as heads,
(iii) lexical entries carry hidden extra-information which can be revealed.

Principles (i) and (ii) are satisfied by all head lexicalization routines which we know
of. We base our model on the relatively simple head-lexicalized model presented in
Section 2 because we do not want to explore how hidden extra-information flows in a
tree-bank. Rather we would like to induce which extra-information flows in single trees
and in tree-banks. Figure 4 displays a simple example of the type of extra-information
mark-up we are interested in. Compared to the tree in Figure 3, all nodes carry some
abstract extra-information type of the form m1, m2, m3, These information types
are introduced at the part-of-speech level, and the combination of POS tag and extra-
information flows bottom-up along a chain of categories marked as heads. In other
words, the combination of POS tags and extra-information forms new but more com-
plex heads of the head-lexicalized CFG. Moreover, we explicitly allow for ambiguous
heads in the lexical rules. Formally, the mark-up of extra-information and the flow of
the combination of original heads and extra-information can be done via the following
transformation of the head-lexicalized CFG introduced in Section 2.

Definition. The set T of terminal symbols and the set H of head symbols remain
unchanged. The non-terminal symbols of the transform have the form X [v][m] or

Inducing Head-Driven PCFGs with Latent Heads 297

<Y<X [v]>>[m] . Here, X [v] and <Y<X [v]>> are non-terminals of the original head-
lexicalized CFG, while m is an extra-information type chosen from a finite set I.
(Throughout this paper, we use I = {m1 . . . mn}.) The set of rules of the transform
consists of the following types:

Lexicalized starting rules with info mark-up: For all extra-information types m ∈ I
and for all heads v ∈ H (where TOP is a new start symbol):

TOP → S[v][m]

Lexicalized rules with info mark-up: For all extra-information types m ∈ I and for
all rules X [v] → . . .<Xi−1<X [v]>> Xi[v] <Xi+1<X [v]>> . . . of the head-lexicalized
CFG:

X [v][m] → . . . <Xi−1<X [v]>>[m] Xi[v][m] <Xi+1<X [v]>>[m] . . .

Lexicalized grammatical relations with info mark-up: For all pairs of extra-
information types i, j ∈ I and for all rules <Y<X [v]>> → Y [w] of the head-lexicalized
CFG:

<Y<X [v]>>[i] → Y [w][j]

Lexical rules with info mark-up: For all extra-information types m ∈ I and for all
lexical rules X [h(w)] → w of the head-lexicalized CFG:

X [h(w)][m] → w

Thus, a head-lexicalized CFG with unambiguous extra-information mark-up con-
tains exactly the same information as the original head-lexicalized CFG. In the rest of
the paper, we show, however, that it is possible to learn hidden, richer, and more accu-
rate head information from tree-banks.

4 Estimating Hidden Head-Information

Given a head-lexicalized CFG, the inductive problem is to estimate a head-lexicalized
CFG with extra-information mark-up. The difficulty is that the rules of the marked-up
CFG can not be directly estimated from the Penn tree-bank (by counting rules) because
the extra-information mark-up is not annotated in the tree-bank. Therefore, we work
with the standard method for unsupervised estimation of PCFGs, the inside-outside al-
gorithm [14]. This algorithm induces probabilities for the grammar rules from a corpus
of sentences. To exploit all linguistic information provided by the given tree-bank, we
have to use trees as input sentences for the IO algorithm.

We thus create a context-free grammar which takes a whole head-lexicalized tree as
input (see Figure 3) and which outputs the same tree marked-up with extra-information
(see Figure 4). We call this grammar a tree-transformation grammar, as both its in-
put and its output are trees. The tree-transformation grammar is characterized by the
following transformation of the head-lexicalized CFG introduced in Section 2.

Definition. The set of terminal symbols of the transform comprises all symbols oc-
curring in the bracket notations of the input trees, i.e., it consists of both terminal

298 D. Prescher

and non-terminal symbols of the head-lexicalized CFG, as well as of two bracket-
symbols ’(’ and ’)’. The non-terminal symbols of the transform have the form X [v][m]
or <Y<X [v]>>[m]. Here, X [v] and <Y<X [v]>> are non-terminals of the original head-
lexicalized CFG, and m is an extra-information type chosen from a finite set I. The set
of rules of the transform consists of the following types:

Lexicalized starting rules with info mark-up: For all extra-information types m ∈ I
and for all heads v ∈ H (where TOP is a new start symbol):

TOP → (ROOT S[v][m])

Lexicalized rules with info mark-up: For all extra-information types m ∈ I and for
all rules X [v] → . . .<Xi−1<X [v]>> Xi[v] <Xi+1<X [v]>> . . . of the head-lexicalized
CFG:

X [v][m] → (X [v] . . . <Xi−1<X [v]>>[m] Xi[v][m] <Xi+1<X [v]>>[m] . . .)

Lexicalized grammatical relations with info mark-up: For all pairs of extra-
information types i, j ∈ I and for all rules <Y<X [v]>> → Y [w] of the head-lexicalized
CFG:

<Y<X [v]>>[i] → (<Y<X [v]>> Y [w][j])

Lexical rules with info mark-up: For all extra-information types m ∈ I and for all
lexical rules X [h(w)] → w of the head-lexicalized CFG:

X [h(w)][m] → (X [h(w)] w)

For example, the bracket notation of the tree in Figure 3 is as follows:

(ROOT (S[.] (<NP<S[.]>> (NP[NNP] (NP[NNP] (<NNP<NP[NNP]>> (NNP[NNP]
Bradley)) (<NN<NP[NNP]>> (NN[NN] A.)) (NNP[NNP] [unknown]))

(<PP<NP[NNP]>> (PP[IN] (IN[IN] in) (<NP<PP[IN]>> (NP[NNP] (NNP[NNP]
Detroit))))))) (<VP<S[.]>> (VP[VBD] (VBD[VBD] contributed) (

<PP<VP[VBD]>> (PP[TO] (TO[TO] to) (<NP<PP[TO]>> (NP[NN] (<DT<NP[NN]>>
(DT[DT] this)) (NN[NN] article))))))) (.[.] .)))

It is easy to check that the tree-transformation grammar is able to parse this term. More-
over, the output for this input tree is a parse forest containing (amongst others) the
marked-up tree displayed in Figure 4.

Estimation via de-transformation of the tree-transformation grammar: Comparing
the definition in this section with the one in the previous section, it is obvious that there
is a one-to-one mapping from the rules of the tree-transformation grammar to the rules
of the mark-up grammar. For instance, a rule of the tree-transformation grammar having
the form

marked up cat → (cat marked up child1 . . . marked up childn)

can be simply de-transformed to the following rule of the mark-up grammar

marked up cat → marked up child1 . . .marked up childn

Inducing Head-Driven PCFGs with Latent Heads 299

 2.4

 2.45

 2.5

 2.55

 2.6

 2.65

 2.7

 2.75

 2.8

 2.85

 2.9

 2.95

 0 5 10 15 20 25 30

pe
r-

w
or

d
pe

rp
le

xi
ty

number of re-estimation steps of the IO algorithm

Perplexity Values During Training

2 i-types
5 i-types

10 i-types
20 i-types

Fig. 5. The plot displays the perplexity of the training corpus for different models at each re-
estimation step of the inside-outside algorithm. The displayed perplexity values are per-word-
perplexity values as defined in the implementation of [15]. Just as in the standard case, a lower
perplexity value corresponds to a higher corpus probability. The models differ in the number
of extra-information types for the lexical items. After about 10 iterations, a model with more
extra-information types always has a lower perplexity on the training corpus.

In fact, the significant difference between the tree-transformation grammar and the
mark-up grammar is that the tree-transformation grammar acts on input trees, whereas
the mark-up grammar operates on the yields of these trees. In more detail, the mark-
up grammar produces for an input sentence the trees of the POS-lexicalized gram-
mar marked-up with all the possible extra-information, whereas the tree-transformation
grammar produces the mark-up only for one single input tree.

To summarize, the transformation of the mark-up grammar to the tree-
transformation grammar enables estimation on the basis of a corpus of trees, whereas
the de-transformation of the tree-transformation grammar results in a trained mark-up
grammar. Inside-outside estimation of a probabilistic version of the tree-transformation
grammar on the tree-bank results thus in a probabilistic version of the mark-up grammar
introduced in Section 3. This solves our induction problem.

Implementation (for efficiency improvement): Instead of a single left-bracket sym-
bol ’(’, we use multiple left-bracket symbols ’(id’ to represent the tree-transformation
grammar and its training corpus. The numbers id are identifiers for the rules of the
underlying POS-lexicalized CFG. As a consequence, the information mark-up is not
estimated in cubic but rather in linear time (in the tree size).

5 Experiments

Using the grammar described in Section 3 and the estimation method described in Sec-
tion 4, we estimated our models for parts of the Penn tree-bank [16]. To facilitate com-
parison with previous work, we trained our models on sections 2-21 of the WSJ section

300 D. Prescher

Table 1. Features of the final models: The first column lists the number of extra-information
types for the different models. Note that the model with 1 extra-information type is equivalent
to lexicalization with POS tags as heads. This model is unambiguous and was not trained with
the IO algorithm. The second column lists the total number of rules of the tree-transformation
grammars (being used to train our models), thereby only counting the rules with a final non-zero
probability. The third column displays the rough number of inside-outside iterations for training,
whereas the fourth column lists the rough total training time (resulting from a training time of
2 1

2 − 4 hours per iteration step). Finally, the fifth column displays the perplexity of the training
corpus for the final models.

i-types rules iter training time perp
1 53 437 0 0 days 2.821
2 101 385 35 4 days 2.701
5 226 748 35 5 days 2.559

10 396 618 50 7 days 2.467
20 760 894 50 8 days 2.426

of the Penn tree-bank. All trees were modified such that: node labels consisted solely of
syntactic category information, empty nodes (i.e. nodes dominating the empty string)
were deleted, and finally, words in rules occurring less than 3 times in the tree-bank were
replaced by an unknown-word symbol ‘[unknown]’. No other changes were made.

We trained our models with the standard IO algorithm for unlexicalized context-free
grammars as implemented in [15], thereby activating the built-in (absolute discounting)
smoothing routine for grammar rules. We also performed some preliminary experiments
without smoothing but after observing that about 3000 trees of our training corpus were
allocated a zero-probability under IO estimation (resulting from the fact that too many
grammar rules got a zero-probability), we decided to smooth all rule probabilities.

Figure 5 displays the training behavior of our models, and Table 1 displays some
characteristic features of the final models. After observing that a uniform initialization
of the models had no training effect at all, we started the inside-outside algorithm with
randomly initialized models. So far, we have not tried to find optimal starting parame-
ters (by repeating the whole training process multiple times), because the current exper-
iment took already months. We also have not tried to find optimal iteration numbers (by
evaluating our models after each iteration step on a held-out corpus) because also our
evaluation routine is relatively time costly. We therefore simply trained the models un-
til the perplexity values converged. Although our training regime may be sub-optimal
(with respect to its fixed starting parameters and the chosen number of iterations), it
allows us to systematically investigate models with hundreds of thousands of rules.

6 Evaluation on a Parsing Task

In this section, we evaluate our automatically induced probabilistic grammars on a pars-
ing task. Although parsers developed on the Penn tree-bank are usually evaluated on
Section 23 of the WSJ section of the Penn tree-bank, we decided to use Section 22
as evaluation set (sentences with a length ≤ 40 only). The reasons for doing this are

Inducing Head-Driven PCFGs with Latent Heads 301

Table 2. PARSEVAL scores on our evaluation corpus (Section 22 of the WSJ section of the
Penn tree-bank). The columns labeled with LB, LR, F1, Exact, and CB display values for labeled
precision and recall, the harmonic mean, the exact-match rate and the average number of crossing
brackets respectively. The table at the top displays the parsing results of our baseline grammar,
the original grammar read off slightly modified trees in the training corpus (cp. Figure 1). The
larger table displays parsing results for the different models. The first column lists the number
of extra-information types for the different models. The model with 1 extra-information type is
equivalent to lexicalization with POS tags as heads. It can be regarded as a second baseline. To
facilitate comparisons of the PARSEVAL scores with other model features, the second column
displays the training-corpus perplexity for the different models. There is a strong correlation with
the parsing results: The lower the perplexity the better the parsing result.

Original
grammar

LP LR F1 Exact CB
75.7 70.1 72.8 10.5 2.14

i-types perp LP LR F1 Exact CB
1 2.821 79.3 77.2 78.2 17.1 1.81
2 2.701 81.6 79.9 80.7 20.1 1.64
5 2.559 84.0 83.2 83.6 25.4 1.44

10 2.467 85.2 85.0 85.1 27.9 1.27

two-fold. First, most performance figures of [10] refer to parsing results on Section 22
(serving as their development set). Using the same section will facilitate comparison.
Second, we envision many extensions and improvements of the present model, and
therefore would like to leave Section 23 for future evaluations.

For parsing the sentences of our evaluation corpus, we mapped all unknown words
to the unknown word symbol ‘[unknown]’, and applied the Viterbi algorithm as im-
plemented in [17], exploiting its ability to deal with highly-ambiguous grammars. That
is, we did not use any pruning or smoothing routines for parsing sentences. We then
de-transformed the resulting maximum-probability parses to the format described in
Section 5. That is, we deleted the extra-information types, the auxiliary nodes, and the
POS tags which served as heads. All grammars presented in this section were able to
exhaustively parse the evaluation corpus. Table 2 displays our results in terms of the
commonly used PARSEVAL scores [18]. The average parsing time in 2GB of memory
was 10 seconds per sentence, which is comparable to what is reported in [10].

7 Discussion

In this section, we briefly discuss the experimental results of our final models and com-
pare it to other models. First of all, the size of our models increases almost linear in
the number of extra-information types (see Table 1). For instance, the mark-up gram-
mar with 10 extra-information types contains about 400 000 rules, whereas the POS-
lexicalized grammar has only about 50 000 rules (i-types=1). The explanation is that
the combinations of POS tags and extra-information types serve as new abstract head

302 D. Prescher

elements in our models, and therefore, a grammar with x extra-information types con-
tains roughly x-times the number of rules of the POS-lexicalized grammar. However,
compared to fully lexicalized grammars, our biggest models are still smaller. Second,
the parsing results improve in the number of extra-information types (see Table 2). For
instance, modeling with 10 extra-information types results in a F1 gain of about 12%
compared to the original grammar, and of about 7% compared to the POS-lexicalized
grammar. The only plausible explanation for these significant improvements is that ab-
stract head classes have been learned by our method which are very useful for pars-
ing. Third, it is striking that the difference between the LP and LR scores is almost
6% for the original grammar, about 2% for the POS-lexicalized grammar, and almost
0% for the grammar with 10 extra-information types. In other words, the difference in
precision and recall vanishes in the number of extra-information types. We argue that
this effect is also related to the fact that useful classes of heads have been learned by
our models.

In the rest of this section, we compare our method to related methods. To start with
performance values, the following table displays previous results on parsing Section 23
of the WSJ section of the Penn tree-bank (sentences of length ≤ 40):

Previous Work LP LR F1 Exact CB
Johnson’98 79.7*
Magerman’95 84.9 84.6 1.26
Collins’96 86.3 85.8 1.14
Klein&Manning’03 86.9 85.7 86.3 30.9 1.10
Charniak’97 87.4 87.5 1.00
Collins’99 88.7 88.6 0.90

Comparison indicates that our best model outperforms parent encoding [5] (*best score
of several variants investigated in [10]). It is already as good as the early lexicalized
model of [3], a bit worse than the unlexicalized parsing model of [10], and of course
also worse than state-of-the-art lexicalized parsers. (Experience shows that evaluation
results on sections 22 and 23 do not differ much.) Beyond performance values, we
believe our formalism and methodology have the following attractive features:

1. The models incorporate context and lexical information collected from the whole
tree-bank. Information is bundled into abstract heads of higher-order information. This
is in sharp contrast to the fixed-word statistics used in most lexicalized parsing mod-
els ([2], [3], [4], [6], etc.) 2. The models have a drastically reduced parameter space
compared to lexicalized parsing. Thus they do not suffer from sparse-data problems.
3. The method is based on the original tree-bank and it is not dependent on the success
of transformations applied beforehand (like parent-encoding in [6], [10], etc.) 4. The
method results in an automatic linguistic mark-up of tree-bank grammars. In contrast,
manual linguistic mark-up of the tree-bank like in [10] is based on individual linguistic
intuition and might be cost and time intensive. 5. The method, we introduced in this
paper, can be thought of a new lexicalization scheme of CFG based on the notion of
hidden head-information. 6. The method can also be thought of a successful attempt to
incorporate lexical classes into parsers, combined with a new word clustering method

Inducing Head-Driven PCFGs with Latent Heads 303

based on the context represented in tree structure. 7. It thus complements and extends
the approach of [19], which aims at discovering latent head markers in tree-banks to
improve manually written head-percolation rules. 8. The method is also an extension
of factorial HMMs [20] to PCFGs: The node labels on trees are enriched with a hidden
state and the hidden states are learned with the EM algorithm.

Some of the benefits come at a cost: Clear linguistic interpretation of the induced
extra information is currently lacking. It is also possible that extensive manual linguistic
mark-up is partly orthogonal to the one we induced. These compromises were made in
this paper to answer the important question whether it is possible to induce an accurate
parser from the Penn tree-bank which is not based on full lexicalization.

To conclude, we automatically induced a head-driven PCFG with latent-head statis-
tics from the Penn tree-bank. The resulting parser is as good as early lexicalized parsers.
This is a promising result and suggests that our method can be successfully applied
across domains, languages, and tree-bank annotations.

Acknowledgment

This work was supported by the Netherlands Organization for Scientific Research,
project no. 612.000.312, ’Learning Stochastic Tree-Grammars from Treebanks’. I also
would like to thank Karin Müller, Yoav Seginer, Jelle Zuidema, and the anonymous
reviewers. A special thanks goes to Helmut Schmid, Khalil Sima’an, and Tylman Ule.

References

1. Charniak, E.: Tree-bank grammars. Technical Report CS-96-02, Brown University (1996)
2. Charniak, E.: Parsing with context-free grammars and word statistics. Technical Report

CS-95-28, Department of Computer Science, Brown University (1995)
3. Magerman, D.M.: Statistical decision-tree models for parsing. In: Proc. of ACL’95. (1995)
4. Collins, M.: A new statistical parser based on bigram lexical dependencies. In: Proc. of the

ACL’96. (1996)
5. Johnson, M.: PCFG models of linguistic tree representations. Comp. Linguistics 24 (1998)
6. Collins, M.: Head-Driven Statistical Models for Natural Language Parsing. PhD thesis, U of

Pennsylvania (1999)
7. Dubey, A., Keller, F.: Probabilistic parsing for German using sister-head dependencies. In:

Proc. of ACL’03. (2003)
8. Fissaha, S., Olejnik, D., Kornberger, R., Müller, K., Prescher, D.: Experiments in German

treebank parsing. In: Proc. of TSD-03. (2003)
9. Bikel, D.: Intricacies of Collins’ parsing model. Computational Linguistics (to appear)

10. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proc. of ACL-03. (2003)
11. Bresnan, J., Kaplan, R.M.: Lexical functional grammar: A formal system for grammatical

representation. In: The Mental Representation of Grammatical Relations. MIT Press (1982)
12. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via

the EM algorithm. J. Royal Statist. Soc. 39 (1977)
13. Carroll, G., Rooth, M.: Valence induction with a head-lexicalized PCFG. In: Proc. of

EMNLP-3. (1998)
14. Lari, K., Young, S.J.: The estimation of stochastic context-free grammars using the inside-

outside algorithm. Computer Speech and Language 4 (1990)

304 D. Prescher

15. Schmid, H.: LoPar. Design and Implementation. Technical report, IMS, U Stuttgart (1999)
16. Marcus, M., Santorini, B., Marcinkiewicz, M.: Building a large annotated corpus of english:

The Penn treebank. Computational Linguistics 19 (1993)
17. Schmid, H.: Efficient parsing of highly ambiguous context-free grammars with bit vectors.

In: Proc. of COLING-04. (2004)
18. Black, E., etal.: A procedure for quantitatively comparing the syntactic coverage of English

grammars. In: Proc. of DARPA-91. (1991)
19. Chiang, D., Bikel, D.: Recovering latent information in treebanks. In: Proc. of COLING’02.

(2002)
20. Ghahramani, Z., Jordan, M.: Factorial Hidden Markov Models. Technical report, MIT (1995)

	Introduction
	Head Lexicalization
	Modeling Hidden Head-Information
	Estimating Hidden Head-Information
	Experiments
	Evaluation on a Parsing Task
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

