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1 Introduction

The paper gives a brief review of the expectation-maximization algorithm (Dempster, Laird,
and Rubin 1977) in the comprehensible framework of discrete mathematics. In Section 2, two
prominent estimation methods, the relative-frequency estimation and the maximum-likelihood
estimation are presented. Section 3 is dedicated to the expectation-maximization algorithm
and a simpler variant, the generalized expectation-maximization algorithm. In Section 4, two
loaded dice are rolled. Enjoy!

2 Estimation Methods

A statistics problem is a problem in which a corpus1 that has been generated in accordance
with some unknown probability distribution must be analyzed and some type of inference
about the unknown distribution must be made. In other words, in a statistics problem there is
a choice between two or more probability distributions which might have generated the corpus.
In practice, there are often an infinite number of different possible distributions – statisticians
bundle these into one single probability model – which might have generated the corpus. By
analyzing the corpus, an attempt is made to learn about the unknown distribution. So, on the
basis of the corpus, an estimation method selects one instance of the probability model,
thereby aiming at finding the original distribution. In this section, two common estimation
methods, the relative-frequency and the maximum-likelihood estimation, are presented.

Corpora

Definition 1 Let X be a countable set. A real-valued function f : X → R is called a corpus,
if f ’s values are non-negative numbers

f(x) ≥ 0 for all x ∈ X
1Statisticians use the term sample but computational linguists prefer the term corpus
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Each x ∈ X is called a type, and each value of f is called a type frequency. The corpus
size2 is defined as

|f | =
∑
x∈X

f(x)

Finally, a corpus is called non-empty and finite if

0 < |f | < ∞

In this definition, type frequencies are defined as non-negative real numbers. The reason for
not taking natural numbers is that some statistical estimation methods define type frequencies
as weighted occurrence frequencies (which are not natural but non-negative real numbers).
Later on, in the context of the EM algorithm, this point will become clear. Note also that
a finite corpus might consist of an infinite number of types with positive frequencies. The
following definition shows that Definition 1 covers the standard notion of the term corpus
(used in Computational Linguistics) and of the term sample (used in Statistics).

Definition 2 Let x1, . . . , xn be a finite sequence of type instances from X . Each xi of this
sequence is called a token. The occurrence frequency of a type x in the sequence is defined
as the following count

f(x) = | { i | xi = x} |

Obviously, f is a corpus in the sense of Definition 1, and it has the following properties: The
type x does not occur in the sequence if f(x) = 0; In any other case there are f(x) tokens
in the sequence which are identical to x. Moreover, the corpus size |f | is identical to n, the
number of tokens in the sequence.

Relative-Frequency Estimation

Let us first present the notion of probability that we use throughout this paper.

Definition 3 Let X be a countable set of types. A real-valued function p : X → R is called a
probability distribution on X , if p has two properties: First, p’s values are non-negative
numbers

p(x) ≥ 0 for all x ∈ X

and second, p’s values sum to 1 ∑
x∈X

p(x) = 1

Readers familiar to probability theory will certainly note that we use the term probability
distribution in a sloppy way (Duda et al. (2001), page 611, introduce the term probability
mass function instead). Standardly, probability distributions allocate a probability value p(A)
to subsets A ⊆ X , so-called events of an event space X , such that three specific axioms are
satisfied (see e.g. DeGroot (1989)):

Axiom 1 p(A) ≥ 0 for any event A.
2Note that the corpus size |f | is well-defined: The order of summation is not relevant for the value of the

(possible infinite) series
∑

x∈X f(x), since the types are countable and the type frequencies are non-negative
numbers
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Figure 1: Maximum-likelihood estimation and relative-frequency estimation

Axiom 2 p(X ) = 1.

Axiom 3 p(
⋃∞

i=1 Ai) =
∑∞

i=1 p(Ai) for any infinite sequence of disjoint events A1, A2, A3, ...

Now, however, note that the probability distributions introduced in Definition 3 induce rather
naturally the following probabilities for events A ⊆ X

p(A) :=
∑
x∈A

p(x)

Using the properties of p(x), we can easily show that the probabilities p(A) satisfy the three
axioms of probability theory. So, Definition 3 is justified and thus, for the rest of the paper,
we are allowed to put axiomatic probability theory out of our minds.

Definition 4 Let f be a non-empty and finite corpus. The probability distribution

p̃ : X → [0, 1] where p̃(x) =
f(x)
|f |

is called the relative-frequency estimate on f .

The relative-frequency estimation is the most comprehensible estimation method and has
some nice properties which will be discussed in the context of the more general maximum-
likelihood estimation. For now, however, note that p̃ is well defined, since both |f | > 0
and |f | < ∞. Moreover, it is easy to check that p̃’s values sum to one:

∑
x∈X p̃(x) =∑

x∈X |f |−1 · f(x) = |f |−1 ·
∑

x∈X f(x) = |f |−1 · |f | = 1.

Maximum-Likelihood Estimation

Maximum-likelihood estimation was introduced by R. A. Fisher in 1912, and will typically
yield an excellent estimate if the given corpus is large. Most notably, maximum-likelihood
estimators fulfill the so-called invariance principle and, under certain conditions which
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are typically satisfied in practical problems, they are even consistent estimators (DeGroot
1989). For these reasons, maximum-likelihood estimation is probably the most widely used
estimation method.

Now, unlike relative-frequency estimation, maximum-likelihood estimation is a fully-fledged
estimation method that aims at selecting an instance of a given probability model which
might have originally generated the given corpus. By contrast, the relative-frequency estimate
is defined on the basis of a corpus only (see Definition 4). Figure 1 reveals the conceptual
difference of both estimation methods. In what follows, we will pay some attention to de-
scribe the single setting, in which we are exceptionally allowed to mix up both methods (see
Theorem 1). Let us start, however, by presenting the notion of a probability model.

Definition 5 A non-empty set M of probability distributions on a set X of types is called a
probability model on X . The elements of M are called instances of the model M. The
unrestricted probability model is the set M(X ) of all probability distributions on the set
of types

M(X ) =

{
p : X → [0, 1]

∣∣∣∣∣ ∑
x∈X

p(x) = 1

}
A probability model M is called restricted in all other cases

M⊆M(X ) and M 6= M(X )

In practice, most probability models are restricted since their instances are often defined on a
set X comprising multi-dimensional types such that certain parts of the types are statistically
independent (see examples 4 and 5). Here is another side note: We already checked that
the relative-frequency estimate is a probability distribution, meaning in terms of Definition 5
that the relative-frequency estimate is an instance of the unrestricted probability model. So,
from an extreme point of view, the relative-frequency estimation might be also regarded as
a fully-fledged estimation method exploiting a corpus and a probability model (namely, the
unrestricted model).

In the following, we define maximum-likelihood estimation as a method that aims at
finding an instance of a given model which maximizes the probability of a given corpus.
Later on, we will see that maximum-likelihood estimates have an additional property: They
are the instances of the given probability model that have a “minimal distance” to the relative
frequencies of the types in the corpus (see Theorem 2). So, indeed, maximum-likelihood
estimates can be intuitively thought of in the intended way: They are the instances of the
probability model that might have originally generated the corpus.

Definition 6 Let f be a non-empty and finite corpus on a countable set X of types. Let M
be a probability model on X . The probability of the corpus allocated by an instance p of
the model M is defined as

L(f ; p) =
∏
x∈X

p(x)f(x)

An instance p̂ of the model M is called a maximum-likelihood estimate of M on f , if
and only if the corpus f is allocated a maximum probability by p̂

L(f ; p̂) = max
p∈M

L(f ; p)

(Based on continuity arguments, we use the convention that p0 = 1 and 00 = 1.)
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Figure 2: Maximum-likelihood estimation and relative-frequency estimation yield for some “excep-
tional” probability models the same estimate. These models are lightly restricted or even unrestricted
models that contain an instance comprising the relative frequencies of all corpus types (left-hand side).
In practice, however, most probability models will not behave like that. So, maximum-likelihood es-
timation and relative-frequency estimation yield in most cases different estimates. As a further and
more serious consequence, the maximum-likelihood estimates have then to be searched for by genuine
optimization procedures (right-hand side).

By looking at this definition, we recognize that maximum-likelihood estimates are the solu-
tions of a quite complex optimization problem. So, some nasty questions about maximum-
likelihood estimation arise:

Existence Is there for any probability model and any corpus a maximum-likelihood
estimate of the model on the corpus?

Uniqueness Is there for any probability model and any corpus a unique maximum-
likelihood estimate of the model on the corpus?

Computability For which probability models and corpora can maximum-likelihood
estimates be efficiently computed?

For some probability models M, the following theorem gives a positive answer.

Theorem 1 Let f be a non-empty and finite corpus on a countable set X of types. Then:

(i) The relative-frequency estimate p̃ is a unique maximum-likelihood estimate of the unre-
stricted probability model M(X ) on f .

(ii) The relative-frequency estimate p̃ is a maximum-likelihood estimate of a (restricted or
unrestricted) probability model M on f , if and only if p̃ is an instance of the model M.
In this case, p̃ is a unique maximum-likelihood estimate of M on f .

Proof Ad (i): Combine theorems 2 and 3. Ad (ii): “⇒” is trivial. “⇐” by (i) q.e.d.

On a first glance, proposition (ii) seems to be more general than proposition (i), since propo-
sition (i) is about one single probability model, the unrestricted model, whereas proposi-
tion (ii) gives some insight about the relation of the relative-frequency estimate to a maximum-
likelihood estimate of arbitrary restricted probability models (see also Figure 2). Both propo-
sitions, however, are equivalent. As we will show later on, proposition (i) is equivalent to
the famous information inequality of information theory, for which various proofs have been
given in the literature.
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Example 1 On the basis of the following corpus

f(a) = 2, f(b) = 3, f(c) = 5

we shall calculate the maximum-likelihood estimate of the unrestricted probability model
M({a, b, c}), as well as the maximum-likelihood estimate of the restricted probability model

M =
{
p ∈M({a, b, c})

∣∣∣ p(a) = 0.5
}

The solution is instructive, but is left to the reader.

The Information Inequality of Information Theory

Definition 7 The relative entropy D(p || q) of the probability distribution p with respect
to the probability distribution q is defined by

D(p || q) =
∑
x∈X

p(x) log
p(x)
q(x)

(Based on continuity arguments, we use the convention that 0 log 0
q = 0 and p log p

0 = ∞ and
0 log 0

0 = 0. The logarithm is calculated with respect to the base 2.)

Connecting maximum-likelihood estimation with the concept of relative entropy, the follow-
ing theorem gives the important insight that the relative-entropy of the relative-frequency
estimate is minimal with respect to a maximum-likelihood estimate.

Theorem 2 Let p̃ be the relative-frequency estimate on a non-empty and finite corpus f , and
let M be a probability model on the set X of types. Then: An instance p̂ of the model M is
a maximum-likelihood estimate of M on f , if and only if the relative-entropy of p̃ is minimal
with respect to p̂

D(p̃ || p̂) = min
p∈M

D(p̃ || p)

Proof First, the relative entropy D(p̃ || p) is simply the difference of two further entropy
values, the so-called cross-entropy H(p̃; p) = −

∑
x∈X p̃(x) log p(x) and the entropy H(p̃) =

−
∑

x∈X p̃(x) log p̃(x) of the relative-frequency estimate

D(p̃ || p) = H(p̃; p)−H(p̃)

(Based on continuity arguments and in full agreement with the convention used in Definition 7,
we use here that p̃ log 0 = −∞ and 0 log 0 = 0.) It follows that minimizing the relative
entropy is equivalent to minimizing the cross-entropy (as a function of the instances p of
the given probability model M). The cross-entropy, however, is proportional to the negative
log-probability of the corpus f

H(p̃; p) = − 1
|f |

log L(f ; p)
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So, finally, minimizing the relative entropy D(p̃ || p) is equivalent to maximizing the corpus
probability L(f ; p). 3

Together with Theorem 2, the following theorem, the so-called information inequality of
information theory, proves Theorem 1. The information inequality states simply that the
relative entropy is a non-negative number – which is zero, if and only if the two probability
distributions are equal.

Theorem 3 (Information Inequality) Let p and q be two probability distributions. Then

D(p || q) ≥ 0

with equality if and only if p(x) = q(x) for all x ∈ X .

Proof See, e.g., Cover and Thomas (1991), page 26.

*Maximum-Entropy Estimation

Readers only interested in the expectation-maximization algorithm are encouraged to omit
this section. For completeness, however, note that the relative entropy is asymmetric. That
means, in general

D(p||q) 6= D(q||p)

It is easy to check that the triangle inequality is not valid too. So, the relative entropy D(.||.)
is not a “true” distance function. On the other hand, D(.||.) has some of the properties of a
distance function. In particular, it is always non-negative and it is zero if and only if p = q
(see Theorem 3). So far, however, we aimed at minimizing the relative entropy with respect
to its second argument, filling the first argument slot of D(.||.) with the relative-frequency
estimate p̃. Obviously, these observations raise the question, whether it is also possible to
derive other “good” estimates by minimizing the relative entropy with respect to its first
argument. So, in terms of Theorem 2, it might be interesting to ask for model instances
p∗ ∈M with

D(p∗||p̃) = min
p∈M

D(p||p̃)

For at least two reasons, however, this initial approach of relative-entropy estimation is too
simplistic. First, it is tailored to probability models that lack any generalization power.
Second, it does not provide deeper insight when estimating constrained probability models.
Here are the details:

3For completeness, note that the perplexity of a corpus f allocated by a model instance p is defined as

perp(f ; p) = 2H(p̃;p). This yields perp(f ; p) = |f|
√

1
L(f ;p)

and L(f ; p) =
(

1
perp(f ;p)

)|f |
as well as the common

interpretation that the perplexity value measures the complexity of the given corpus from the
model instance’s view: the perplexity is equal to the size of an imaginary word list from which the corpus
can be generated by the model instance – assuming that all words on this list are equally probable. Moreover,
the equations state that minimizing the corpus perplexity perp(f ; p) is equivalent to maximizing the corpus
probability L(f ; p).
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• A closer look at Definition 7 reveals that the relative entropy D(p||p̃) is finite for those
model instances p ∈M only that fulfill

p̃(x) = 0 ⇒ p(x) = 0

So, the initial approach would lead to model instances that are completely unable to
generalize, since they are not allowed to allocate positive probabilities to at least some
of the types not seen in the training corpus.

• Theorem 2 guarantees that the relative-frequency estimate p̃ is a solution to the initial
approach of relative-entropy estimation, whenever p̃ ∈M. Now, Definition 8 introduces
the constrained probability models Mconstr, and indeed, it is easy to check that p̃ is
always an instance of these models. In other words, estimating constrained probability
models by the approach above does not result in interesting model instances.

Clearly, all the mentioned drawbacks are due to the fact that the relative-entropy minimization
is performed with respect to the relative-frequency estimate. As a resource, we switch simply
to a more convenient reference distribution, thereby generalizing formally the initial problem
setting. So, as the final request, we ask for model instances p∗ ∈M with

D(p∗||p0) = min
p∈M

D(p||p0)

In this setting, the reference distribution p0 ∈M(X ) is a given instance of the unrestricted
probability model, and from what we have seen so far, p0 should allocate all types of interest
a positive probability, and moreover, p0 should not be itself an instance of the probability
model M. Indeed, this request will lead us to the interesting maximum-entropy estimates.
Note first, that

D(p||p0) = H(p; p0)−H(p)

So, minimizing D(p||p0) as a function of the model instances p is equivalent to minimizing
the cross entropy H(p; p0) and simultaneously maximizing the model entropy H(p). Now,
simultaneous optimization is a hard task in general, and this gives reason to focus firstly
on maximizing the entropy H(p) in isolation. The following definition presents maximum-
entropy estimation in terms of the well-known maximum-entropy principle (Jaynes 1957).
Sloppily formulated, the maximum-entropy principle recommends to maximize the entropy
H(p) as a function of the instances p of certain “constrained” probability models.

Definition 8 Let f1, . . . , fd be a finite number of real-valued functions on a set X of types,
the so-called feature functions4. Let p̃ be the relative-frequency estimate on a non-empty

4Each of these feature functions can be thought of as being constructed by inspecting the set of types,
thereby measuring a specific property of the types x ∈ X . For example, if working in a formal-grammar
framework, then it might be worthy to look (at least) at some feature functions fr directly associated to the
rules r of the given formal grammar. The “measure” fr(x) of a specific rule r for the analyzes x ∈ X of the
grammar might be calculated, for example, in terms of the occurrence frequency of r in the sequence of those
rules which are necessary to produce x. For instance, Chi (1999) studied this approach for the context-free
grammar formalism. Note, however, that there is in general no recipe for constructing “good” feature functions:
Often, it is really an intellectual challenge to find those feature functions that describe the given data as best
as possible (or at least in a satisfying manner).

8



and finite corpus f on X . Then, the probability model constrained by the expected
values of f1 . . . fd on f is defined as

Mconstr =

{
p ∈M(X )

∣∣∣∣∣ Epfi = Ep̃fi for i = 1, . . . , d

}

Here, each Epfi is the model instance’s expectation of fi

Epfi =
∑
x∈X

p(x)fi(x)

constrained to match Ep̃fi, the observed expectation of fi

Ep̃fi =
∑
x∈X

p̃(x)fi(x)

Furthermore, a model instance p∗ ∈ Mconstr is called a maximum-entropy estimate of
Mconstr if and only if

H(p∗) = max
p∈Mconstr

H(p)

It is well-known that the maximum-entropy estimates have some nice properties. For example,
as Definition 9 and Theorem 4 show, they can be identified to be the unique maximum-
likelihood estimates of the so-called exponential models (which are also known as log-linear
models).

Definition 9 Let f1, . . . , fd be a finite number of feature functions on a set X of types. The
exponential model of f1, . . . , fd is defined by

Mexp =

{
p ∈M(X )

∣∣∣∣∣ p(x) =
1

Zλ
eλ1f1(x)+...+λdfd(x) with λ1, . . . , λd, Zλ ∈ R

}

Here, the normalizing constant Zλ (with λ as a short form for the sequence λ1, . . . , λd)
guarantees that p ∈M(X ), and it is given by

Zλ =
∑
x∈X

eλ1f1(x)+...+λdfd(x)

Theorem 4 Let f be a non-empty and finite corpus, and f1, . . . , fd be a finite number of
feature functions on a set X of types. Then

(i) The maximum-entropy estimates of Mconstr are instances of Mexp, and the maximum-
likelihood estimates of Mexp on f are instances of Mconstr.

(ii) If p∗ ∈Mconstr ∩Mexp, then p∗ is both a unique maximum-entropy estimate of Mconstr

and a unique maximum-likelihood estimate of Mexp on f .

Part (i) of the theorem simply suggests the form of the maximum-entropy or maximum-
likelihood estimates we are looking for. By combining both findings of (i), however, the
search space is drastically reduced for both estimation methods: We simply have to look at
the intersection of the involved probability models. In turn, exactly this fact makes the second
part of the theorem so valuable. If there is a maximum-entropy or a maximum-likelihood
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Figure 3: Maximum-likelihood estimation generalizes maximum-entropy estimation, as well as both
variants of minimum relative-entropy estimation (where either the first or the second argument slot of
D(.||.) is filled by a given probability distribution).

estimate, then it is in the intersection of both models, and thus according to Part (ii), it is a
unique estimate, and even more, it is both a maximum-entropy and a maximum-likelihood
estimate.

Proof See e.g. Cover and Thomas (1991), pages 266-278. For an interesting alternate proof
of (ii), see Ratnaparkhi (1997). Note, however, that the proof of Ratnaparkhi’s Theorem 1
is incorrect, whenever the set X of types is infinite. Although Ratnaparkhi’s proof is very
elegant, it relies on the existence of a uniform distribution on X that simply does not exist
in this special case. By contrast, Cover and Thomas prove Theorem 11.1.1 without using a
uniform distribution on X , and so, they achieve indeed the more general result.

Finally, we are coming back to our request of minimizing the relative entropy with respect to
a given reference distribution p0 ∈ M(X ). For constrained probability models, the relevant
results differ not much from the results described in Theorem 4. So, let

Mexp·ref =

{
p ∈M(X )

∣∣∣∣∣ p(x) =
1

Zλ
eλ1f1(x)+...+λdfd(x) · p0(x) with λ1, . . . , λd, Zλ ∈ R

}

Then, along the lines of the proof of Theorem 4 it can be also proven that the following
propositions are valid.

(i) The minimum relative-entropy estimates of Mconstr are instances of Mexp·ref , and the
maximum-likelihood estimates of Mexp·ref on f are instances of Mconstr.

(ii) If p∗ ∈Mconstr ∩Mexp·ref , then p∗ is both a unique minimum relative-entropy estimate
of Mconstr and a unique maximum-likelihood estimate of Mexp·ref on f .

All results are displayed in Figure 3.

3 The Expectation-Maximization Algorithm

The expectation-maximization algorithm was introduced by Dempster et al. (1977), who
also presented its main properties. In short, the EM algorithm aims at finding maximum-
likelihood estimates for settings where this appears to be difficult if not impossible. The trick
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Figure 4: Input and output of the EM algorithm.

of the EM algorithm is to map the given data to complete data on which it is well-known
how to perform maximum-likelihood estimation. Typically, the EM algorithm is applied in
the following setting:

• Direct maximum-likelihood estimation of the given probability model on the given cor-
pus is not feasible. For example, if the likelihood function is too complex (e.g. it is a
product of sums).

• There is an obvious (but one-to-many) mapping to complete data, on which maximum-
likelihood estimation can be easily done. The prototypical example is indeed that
maximum-likelihood estimation on the complete data is already a solved problem.

Both relative-frequency and maximum-likelihood estimation are common estimation methods
with a two-fold input, a corpus and a probability model5 such that the instances of the
model might have generated the corpus. The output of both estimation methods is simply
an instance of the probability model, ideally, the unknown distribution that generated the
corpus. In contrast to this setting, in which we are almost completely informed (the only
thing that is not known to us is the unknown distribution that generated the corpus), the
expectation-maximization algorithm is designed to estimate an instance of the probability
model for settings, in which we are incompletely informed.

To be more specific, instead of a complete-data corpus, the input of the expectation-
maximization algorithm is an incomplete-data corpus together with a so-called symbolic
analyzer. A symbolic analyzer is a device assigning to each incomplete-data type a set
of analyzes, each analysis being a complete-data type. As a result, the missing complete-
data corpus can be partly compensated by the expectation-maximization algorithm: The
application of the the symbolic analyzer to the incomplete-data corpus leads to an ambiguous
complete-data corpus. The ambiguity arises as a consequence of the inherent analytical
ambiguity of the symbolic analyzer: the analyzer can replace each token of the incomplete-
data corpus by a set of complete-data types – the set of its analyzes – but clearly, the symbolic
analyzer is not able to resolve the analytical ambiguity.

The expectation-maximization algorithm performs a sequence of runs over the resulting
ambiguous complete-data corpus. Each of these runs consists of an expectation step fol-
lowed by a maximization step. In the E step, the expectation-maximization algorithm
combines the symbolic analyzer with an instance of the probability model. The results of

5We associate the relative-frequency estimate with the unrestricted probability model
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this combination is a statistical analyzer which is able to resolve the analytical ambi-
guity introduced by the symbolic analyzer. In the M step, the expectation-maximization
algorithm calculates an ordinary maximum-likelihood estimate on the resolved complete-data
corpus.

In general, however, a sequence of such runs is necessary. The reason is that we never
know which instance of the given probability model leads to a good statistical analyzer, and
thus, which instance of the probability model shall be used in the E-step. The expectation-
maximization algorithm provides a simple but somehow surprising solution to this serious
problem. At the beginning, a randomly generated starting instance of the given probability
model is used for the first E-step. In further iterations, the estimate of the M-step is used
for the next E-step. Figure 4 displays the input and the output of the EM algorithm. The
procedure of the EM algorithm is displayed in Figure 5.

Symbolic and Statistical Analyzers

Definition 10 Let X and Y be non-empty and countable sets. A function

A : Y → 2X

is called a symbolic analyzer if the (possibly empty) sets of analyzes A(y) ⊆ X are
pair-wise disjoint, and the union of all sets of analyzes A(y) is complete

X =
∑
y∈Y

A(y)

In this case, Y is called the set of incomplete-data types, whereas X is called the set of
complete-data types. So, in other words, the analyzes A(y) of the incomplete-data types y
form a partition of the complete-data X . Therefore, for each x ∈ X exists a unique y ∈ Y,
the so-called yield of x, such that x is an analysis of y

y = yield(x) if and only if x ∈ A(y)

For example, if working in a formal-grammar framework, the grammatical sentences can be
interpreted as the incomplete-data types, whereas the grammatical analyzes of the sentences
are the complete-data types. So, in terms of Definition 10, a so-called parser – a device
assigning a set of grammatical analyzes to a given sentence – is clearly a symbolic analyzer:
The most important thing to check is that the parser does not assign a given grammatical
analysis to two different sentences – which is pretty obvious, if the sentence words are part
of the grammatical analyzes.

Definition 11 A pair <A, p> consisting of a symbolic analyzer A and a probability distri-
bution p on the complete-data types X is called a statistical analyzer. We use a statistical
analyzer to induce probabilities for the incomplete-data types y ∈ Y

p(y) :=
∑

x∈A(y)

p(x)

Even more important, we use a statistical analyzer to resolve the analytical ambiguity of
an incomplete-data type y ∈ Y by looking at the conditional probabilities of the analyzes
x ∈ A(y)

p(x|y) :=
p(x)
p(y)

where y = yield(x)
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Figure 5: Procedure of the EM algorithm. An incomplete-data corpus, a symbolic analyzer (a device
assigning to each incomplete-data type a set of complete-data types), and a complete-data model are
given. In the E step, the EM algorithm combines the symbolic analyzer with an instance q of the
probability model. The results of this combination is a statistical analyzer that is able to resolve the
ambiguity of the given incomplete data. In fact, the statistical analyzer is used to generate an expected
complete-data corpus fq. In the M step, the EM algorithm calculates an ordinary maximum-likelihood
estimate of the complete-data model on the complete-data corpus generated in the E step. In further
iterations, the estimates of the M-steps are used in the subsequent E-steps. The output of the EM
algorithm are the estimates that are produced in the M steps.

It is easy to check that the statistical analyzer induces a proper probability distribution on
the set Y of incomplete-data types∑

y∈Y
p(y) =

∑
y∈Y

∑
x∈A(y)

p(x) =
∑
x∈X

p(x) = 1

Moreover, the statistical analyzer induces also proper conditional probability distributions on
the sets of analyzes A(y)∑

x∈A(y)

p(x|y) =
∑

x∈A(y)

p(x)
p(y)

=
∑

x∈A(y) p(x)
p(y)

=
p(y)
p(y)

= 1

Of course, by defining p(x|y) = 0 for y 6= yield(x), p(.|y) is even a probability distribution on
the full set X of analyzes.

Input, Procedure, and Output of the EM Algorithm

Definition 12 The input of the expectation-maximization (EM) algorithm is

(i) a symbolic analyzer, i.e., a function A which assigns a set of analyzes A(y) ⊆ X
to each incomplete-data type y ∈ Y, such that all sets of analyzes form a partition
of the set X of complete-data types

X =
∑
y∈Y

A(y)

13



(ii) a non-empty and finite incomplete-data corpus, i.e., a frequency distribution f on
the set of incomplete-data types

f : Y → R such that f(y) ≥ 0 for all y ∈ Y and 0 < |f | < ∞

(iii) a complete-data model M ⊆ M(X ), i.e., each instance p ∈ M is a probability
distribution on the set of complete-data types

p : X → [0, 1] and
∑
x∈X

p(x) = 1

(*) implicit input: an incomplete-data model M ⊆ M(Y) induced by the symbolic
analyzer and the complete-data model. To see this, recall Definition 11. Together with a
given instance of the complete-data model, the symbolic analyzer constitutes a statistical
analyzer which, in turn, induces the following instance of the incomplete-data model

p : Y → [0, 1] and p(y) =
∑

x∈A(y)

p(x)

(Note: For both complete and incomplete data, the same notation symbols M and p are
used. The sloppy notation, however, is justified, because the incomplete-data model is a
marginal of the complete-data model.)

(iv) a (randomly generated) starting instance p0 of the complete-data model M.
(Note: If permitted by M, then p0 should not assign to any x ∈ X a probability of zero.)

Definition 13 The procedure of the EM algorithm is

(1) for each i = 1, 2, 3, ... do
(2) q := pi−1

(3) E-step: compute the complete-data corpus fq : X → R expected by q

fq(x) := f(y) · q(x|y) where y = yield(x)

(4) M-step: compute a maximum-likelihood estimate p̂ of M on fq

L(fq; p̂) = max
p∈M

L(fq, p)

(Implicit pre-condition of the EM algorithm: it exists!)
(5) pi := p̂
(6) end // for each i
(7) print p0, p1, p2, p3, ...

In line (3) of the EM procedure, a complete-data corpus fq(x) has to be generated on the basis
of the incomplete-data corpus f(y) and the conditional probabilities q(x|y) of the analyzes of y
(conditional probabilities are introduced in Definition 11). In fact, this generation procedure
is conceptually very easy: according to the conditional probabilities q(x|y), the frequency
f(y) has to be distributed among the complete-data types x ∈ A(y). Figure 6 displays the
procedure. Moreover, there exists a simple reversed procedure (summation of all frequencies

14



3analyzes of  y
total frequency = f( y3 )

2analyzes of  y
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total frequency = f( y1 )
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. . .

. . .
fqcomplete−data corpus

x x xx 22 2321

. . .
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. . .
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2

x x12 1311

. . .
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y1 y y3

. . .
distribute f(y)  to the analyzes x of y according q(x|y)

Figure 6: The E step of the EM algorithm. A complete-data corpus fq(x) is generated on the basis
of the incomplete-data corpus f(y) and the conditional probabilities q(x|y) of the analyzes of y. The
frequency f(y) is distributed among the complete-data types x ∈ A(y) according to the conditional
probabilities q(x|y). A simple reversed procedure guarantees that the original incomplete-data corpus
f(y) can be recovered from the generated corpus fq(x): Sum up all frequencies fq(x) with x ∈ A(y).
So the size of both corpora is the same |fq| = |f |. Memory hook : fq is the qomplete data corpus.

fq(x) with x ∈ A(y)) which guarantees that the original corpus f(y) can be recovered from
the generated corpus fq(x). Finally, the size of both corpora is the same

|fq| = |f |

In line (4) of the EM procedure, it is stated that a maximum-likelihood estimate p̂ of the
complete-data model has to be computed on the complete-data corpus fq expected by q.
Recall for this purpose that the probability of fq allocated by an instance p ∈ M is defined
as

L(fq; p) =
∏
x∈X

p(x)fq(x)

In contrast, the probability of the incomplete-data corpus f allocated by an instance p of the
incomplete-data model is much more complex. Using Definition 12.*, we get an expression
involving a product of sums

L(f ; p) =
∏
y∈Y

 ∑
x∈A(y)

p(x)

f(y)

Nevertheless, the following theorem reveals that the EM algorithm aims at finding an instance
of the incomplete-data model which possibly maximizes the probability of the incomplete-data
corpus.
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Theorem 5 The output of the EM algorithm is: A sequence of instances of the complete-data
model M, the so-called EM re-estimates,

p0, p1, p2, p3, ...

such that the sequence of probabilities allocated to the incomplete-data corpus is monotonic
increasing

L(f ; p0) ≤ L(f ; p1) ≤ L(f ; p2) ≤ L(f ; p3) ≤ . . .

It is common wisdom that the sequence of EM re-estimates will converge to a (local) maximum-
likelihood estimate of the incomplete-data model on the incomplete-data corpus. As proven by
Wu (1983), however, the EM algorithm will do this only in specific circumstances. Of course,
it is guaranteed that the sequence of corpus probabilities (allocated by the EM re-estimates)
must converge. However, we are more interested in the behavior of the EM re-estimates itself.
Now, intuitively, the EM algorithm might get stuck in a saddle point or even a local mini-
mum of the corpus-probability function, whereas the associated model instances are hopping
uncontrolled around (for example, on a circle-like path in the “space” of all model instances).

Proof See theorems 6 and 7.

The Generalized Expectation-Maximization Algorithm

The EM algorithm performs a sequence of maximum-likelihood estimations on complete data,
resulting in good re-estimates on incomplete-data (“good” in the sense of Theorem 5). The
following theorem, however, reveals that the EM algorithm might overdo it somehow, since
there exist alternative M-steps which can be easier performed, and which result in re-estimates
having the same property as the EM re-estimates.

Definition 14 A generalized expectation-maximization (GEM) algorithm has exactly the same
input as the EM-algorithm, but an easier M-step is performed in its procedure:

(4) M-step (GEM): compute an instance p̂ of the complete-data modelM such that

L(fq; p̂) ≥ L(fq; q)

Theorem 6 The output of a GEM algorithm is: A sequence of instances of the complete-data
model M, the so-called GEM re-estimates, such that the sequence of probabilities allocated
to the incomplete-data corpus is monotonic increasing.

Proof Various proofs have been given in the literature. The first one was presented by
Dempster et al. (1977). For other variants of the EM algorithm, the book of McLachlan and
Krishnan (1997) is a good source. Here, we present something along the lines of the original
proof. Clearly, a proof of the theorem requires somehow that we are able to express the
probability of the given incomplete-data corpus f in terms of the the probabilities of complete-
data corpora fq which are involved in the M-steps of the GEM algorithm (where both types
of corpora are allocated a probability by the same instance p of the model M). A certain
entity, which we would like to call the expected cross-entropy on the analyzes, plays a
major role for solving this task. To be specific, the expected cross-entropy on the analyzes is
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defined as the expectation of certain cross-entropy values HA(y)(q, p) which are calculated on
the different sets A(y) of analyzes. Then, of course, the “expectation” is calculated on the
basis of the relative-frequency estimate p̃ of the given incomplete-data corpus

HA(q; p) =
∑
y∈Y

p̃(y) ·HA(y)(q; p)

Now, for two instances q and p of the complete-data model, their conditional probabilities
q(x|y) and p(x|y) form proper probability distributions on the set A(y) of analyzes of y (see
Definition 11). So, the cross-entropy HA(y)(q; p) on the set A(y) is simply given by

HA(y)(q; p) = −
∑

x∈A(y)

q(x|y) log p(x|y)

Recalling the central task of this proof, a bunch of relatively straight-forward calculations
leads to the following interesting equation6

L(f ; p) =
(
2HA(q;p)

)|f |
· L(fq; p)

Using this equation, we can state that

L(f ; p)
L(f ; q)

=
(
2HA(q;p)−HA(q,q)

)|f |
· L(fq; p)
L(fq; q)

In what follows, we will show that, after each M-step of a GEM algorithm (i.e. for p being a
GEM re-estimate p̂), both of the factors on the right-hand side of this equation are not less
than one. First, an iterated application of the information inequality of information theory
(see Theorem 3) yields

HA(q; p)−HA(q, q) =
∑
y∈Y

p̃(y) ·
(
HA(y)(q; p)−HA(y)(q; q)

)
=

∑
y∈Y

p̃(y) ·DA(y)(q||p)

≥ 0

So, the first factor is never (i.e. for no model instance p) less than one(
2HA(q;p)−HA(q,q)

)|f |
≥ 1

6It is easier to show that
H(p̃; p) = H(p̃q; p) − HA(q; p).

Here, p̃ is the relative-frequency estimate on the incomplete-data corpus f , whereas p̃q is the relative-frequency
estimate on the complete-data corpus fq. However, by defining an “average perplexity of the analyzes”,
perpA(q; p) := 2HA(q;p) (see also Footnote 3), the true spirit of the equation can be revealed:

L(fq; p) = L(f ; p) ·
(

1

perpA(q; p)

)|f |

This equation states that the probability of a complete-data corpus (generated by a statistical analyzer) is the
product of the probability of the given incomplete-data corpus and |f |-times the average probability of the
different corpora of analyzes (as generated for each of the |f | tokens of the incomplete-data corpus).
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Second, by definition of the M-step of a GEM algorithm, the second factor is also not less
than one

L(fq; p̂)
L(fq; q)

≥ 1

So, it follows
L(f ; p̂)
L(f ; q)

≥ 1

yielding that the probability of the incomplete-data corpus allocated by the GEM re-estimate
p̂ is not less than the probability of the incomplete-data corpus allocated by the model instance
q (which is either the starting instance p0 of the GEM algorithm or the previously calculated
GEM re-estimate)

L(f ; p̂) ≥ L(f ; q)

Theorem 7 An EM algorithm is a GEM algorithm.

Proof In the M-step of an EM algorithm, a model instance p̂ is selected such that

L(fq; p̂) = max
p∈M

L(fq, p)

So, especially
L(fq; p̂) ≥ L(fq, q)

and the requirements of the M-step of a GEM algorithm are met.

4 Rolling Two Dice

Example 2 We shall now consider an experiment in which two loaded dice are rolled, and
we shall compute the relative-frequency estimate on a corpus of outcomes.

If we assume that the two dice are distinguishable, each outcome can be represented as a
pair of numbers (x1, x2), where x1 is the number that appears on the first die and x2 is the
number that appears on the second die. So, for this experiment, an appropriate set X of
types comprises the following 36 outcomes:

(x1, x2) x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 x2 = 6
x1 = 1 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
x1 = 2 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
x1 = 3 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
x1 = 4 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
x1 = 5 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
x1 = 6 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

If we throw the two dice a 100 000 times, then the following occurrence frequencies might
arise

f(x1, x2) x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 x2 = 6
x1 = 1 3790 3773 1520 1498 2233 2298
x1 = 2 3735 3794 1497 1462 2269 2184
x1 = 3 4903 4956 1969 2035 2883 3010
x1 = 4 2495 2519 1026 1049 1487 1451
x1 = 5 3820 3735 1517 1498 2276 2191
x1 = 6 6369 6290 2600 2510 3685 3673
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The size of this corpus is |f | = 100 000. So, the relative-frequency estimate p̃ on f can be
easily computed (see Definition 4)

p̃(x1, x2) x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 x2 = 6
x1 = 1 0.03790 0.03773 0.01520 0.01498 0.02233 0.02298
x1 = 2 0.03735 0.03794 0.01497 0.01462 0.02269 0.02184
x1 = 3 0.04903 0.04956 0.01969 0.02035 0.02883 0.03010
x1 = 4 0.02495 0.02519 0.01026 0.01049 0.01487 0.01451
x1 = 5 0.03820 0.03735 0.01517 0.01498 0.02276 0.02191
x1 = 6 0.06369 0.06290 0.02600 0.02510 0.03685 0.03673

Example 3 We shall consider again Experiment 2 in which two loaded dice are rolled, but
we shall now compute the relative-frequency estimate on the corpus of outcomes of the first
die, as well as on the corpus of outcomes of the second die.

If we look at the same corpus as in Example 2, then the corpus f1 of outcomes of the first
die can be calculated as f1(x1) =

∑
x2

f(x1, x2). An analog summation yields the corpus of
outcomes of the second die, f2(x2) =

∑
x1

f(x1, x2). Obviously, the sizes of all corpora are
identical |f1| = |f2| = |f | = 100 000. So, the relative-frequency estimates p̃1 on f1 and p̃2 on
f2 are calculated as follows

f1(x1) x1

15112 1
14941 2
19756 3
10027 4
15037 5
25127 6

p̃1(x1) x1

0.15112 1
0.14941 2
0.19756 3
0.10027 4
0.15037 5
0.25127 6

f2(x2) x2

25112 1
25067 2
10129 3
10052 4
14833 5
14807 6

p̃2(x2) x2

0.25112 1
0.25067 2
0.10129 3
0.10052 4
0.14833 5
0.14807 6

Example 4 We shall consider again Experiment 2 in which two loaded dice are rolled, but
we shall now compute a maximum-likelihood estimate of the probability model which assumes
that the numbers appearing on the first and second die are statistically independent.

First, recall the definition of statistical independence (see e.g. Duda et al. (2001), page 613).

Definition 15 The variables x1 and x2 are said to be statistically independent given a
joint probability distribution p on X if and only if

p(x1, x2) = p1(x1) · p2(x2)

where p1 and p2 are the marginal distributions for x1 and x2

p1(x1) =
∑
x2

p(x1, x2)

p2(x2) =
∑
x1

p(x1, x2)

So, let M1/2 be the probability model which assumes that the numbers appearing on the first
and second die are statistically independent

M1/2 = {p ∈M(X ) | x1 and x2 are statistically independent given p}
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In Example 2, we have calculated the relative-frequency estimator p̃. Theorem 1 states that p̃
is the unique maximum-likelihood estimate of the unrestricted modelM(X ). Thus, p̃ is also a
candidate for a maximum-likelihood estimate ofM1/2. Unfortunately, however, x1 and x2 are
not statistically independent given p̃ (see e.g. p̃(1, 1) = 0.03790 and p̃1(1)·p̃2(1) = 0.0379493).
This has two consequences for the experiment in which two (loaded) dice are rolled:

• the probability model, which assumes that the numbers appearing on the first and
second die are statistically independent, is a restricted model (see Definition 5), and

• the relative-frequency estimate is in general not a maximum-likelihood esti-
mate of the standard probability model assuming that the numbers appearing on
the first and second die are statistically independent.

Therefore, we are now following Definition 6 to compute the maximum-likelihood estimate
of M1/2. Using the independence property, the probability of the corpus f allocated by an
instance p of the model M1/2 can be calculated as

L(f ; p) =

 ∏
x1=1,...,6

p1(x1)f1(x1)

 ·

 ∏
x2=1,...,6

p2(x2)f2(x2)

 = L(f1; p1) · L(f2; p2)

Definition 6 states that the maximum-likelihood estimate p̂ of M1/2 on f must maximize
L(f ; p). A product, however, is maximized, if and only if its factors are simultaneously
maximized. Theorem 1 states that the corpus probabilities L(fi; pi) are maximized by the
relative-frequency estimators p̃i. Therefore, the product of the relative-frequency estimators
p̃1 and p̃2 (on f1 and f2 respectively) might be a candidate for the maximum-likelihood
estimate p̂ we are looking for

p̂(x1, x2) = p̃1(x1) · p̃2(x2)

Now, note that the marginal distributions of p̂ are identical with the relative-frequency esti-
mators on f1 and f2. For example, p̂’s marginal distribution for x1 is calculated as

p̂1(x1) =
∑
x2

p̂(x1, x2) =
∑
x2

p̃1(x1) · p̃2(x2) = p̃1(x1) ·
∑
x2

p̃2(x2) = p̃1(x1) · 1 = p̃1(x1)

A similar calculation yields p̂2(x2) = p̃2(x2). Both equations state that x1 and x2 are indeed
statistically independent given p̂

p̂(x1, x2) = p̂1(x1) · p̂2(x2)

So, finally, it is guaranteed that p̂ is an instance of the probability model M1/2 as required
for a maximum-likelihood estimate of M1/2. Note: p̂ is even an unique maximum-likelihood
estimate since the relative-frequency estimates p̃i are unique maximum-likelihood estimates
(see Theorem 1). The relative-frequency estimates p̃1 and p̃2 have already been calculated in
Example 3. So, p̂ is calculated as follows

p̂(x1, x2) x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 x2 = 6
x1 = 1 0.0379493 0.0378813 0.0153069 0.0151906 0.0224156 0.0223763
x1 = 2 0.0375198 0.0374526 0.0151337 0.0150187 0.022162 0.0221231
x1 = 3 0.0496113 0.0495224 0.0200109 0.0198587 0.0293041 0.0292527
x1 = 4 0.0251798 0.0251347 0.0101563 0.0100791 0.014873 0.014847
x1 = 5 0.0377609 0.0376932 0.015231 0.0151152 0.0223044 0.0222653
x1 = 6 0.0630989 0.0629859 0.0254511 0.0252577 0.0372709 0.0372055
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Example 5 We shall consider again Experiment 2 in which two loaded dice are rolled. Now,
however, we shall assume that we are incompletely informed: the corpus of outcomes (which
is given to us) consists only of the sums of the numbers which appear on the first and second
die. Nevertheless, we shall compute an estimate for a probability model on the complete-data
(x1, x2) ∈ X .

If we assume that the corpus which is given to us was calculated on the basis of the corpus
given in Example 2, then the occurrence frequency of a sum y can be calculated as f(y) =∑

x1+x2=y f(x1, x2). These numbers are displayed in the following table

f(y) y

3790 2
7508 3

10217 4
10446 5
12003 6
17732 7
13923 8
8595 9
6237 10
5876 11
3673 12

For example,

f(4) = f(1, 3) + f(2, 2) + f(3, 1) = 1520 + 3794 + 4903 = 10217

The problem is now, whether this corpus of sums can be used to calculate a good esti-
mate on the outcomes (x1, x2) itself. Hint: Examples 2 and 4 have shown that a unique
relative-frequency estimate p̃(x1, x2) and a unique maximum-likelihood estimate p̂(x1, x2) can
be calculated on the basis of the corpus f(x1, x2). However, right now, this corpus is not
available! Putting the example in the framework of the EM algorithm (see Definition 12),
the set of incomplete-data types is

Y = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

whereas the set of complete-data types is X . We also know the set of analyzes for each
incomplete-data type y ∈ Y

A(y) = {(x1, x2) ∈ X | x1 + x2 = y}

As in Example 4, we are especially interested in an estimate of the (slightly restricted)
complete-data model M1/2 which assumes that the numbers appearing on the first and
second die are statistically independent. So, for this case, a randomly generated starting in-
stance p0(x1, x2) of the complete-data model is simply the product of a randomly generated
probability distribution p01(x1) for the numbers appearing on the first dice, and a randomly
generated probability distribution p02(x2) for the numbers appearing on the second dice

p0(x1, x2) = p01(x1) · p02(x2)
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The following tables display some randomly generated numbers for p01 and p02

p01(x1) x1

0.18 1
0.19 2
0.16 3
0.13 4
0.17 5
0.17 6

p02(x2) x2

0.22 1
0.23 2
0.13 3
0.16 4
0.14 5
0.12 6

Using the random numbers for p01(x1) and p02(x2), a starting instance p0 of the complete-data
model M1/2 is calculated as follows

p0(x1, x2) x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 x2 = 6
x1 = 1 0.0396 0.0414 0.0234 0.0288 0.0252 0.0216
x1 = 2 0.0418 0.0437 0.0247 0.0304 0.0266 0.0228
x1 = 3 0.0352 0.0368 0.0208 0.0256 0.0224 0.0192
x1 = 4 0.0286 0.0299 0.0169 0.0208 0.0182 0.0156
x1 = 5 0.0374 0.0391 0.0221 0.0272 0.0238 0.0204
x1 = 6 0.0374 0.0391 0.0221 0.0272 0.0238 0.0204

For example,

p0(1, 3) = p01(1) · p02(3) = 0.18 · 0.13 = 0.0234
p0(2, 2) = p01(2) · p02(2) = 0.19 · 0.23 = 0.0437
p0(3, 1) = p01(3) · p02(1) = 0.16 · 0.22 = 0.0352

So, we are ready to start the procedure of the EM algorithm.

First EM iteration. In the E-step, we shall compute the complete-data corpus fq

expected by q := p0. For this purpose, the probability of each incomplete-data type given the
starting instance p0 of the complete-data model has to be computed (see Definition 12.*)

p0(y) =
∑

x1+x2=y

p0(x1, x2)

The above displayed numbers for p0(x1, x2) yield the following instance of the incomplete-data
model

p0(y) y

0.0396 2
0.0832 3
0.1023 4
0.1189 5
0.1437 6
0.1672 7
0.1272 8
0.0867 9
0.0666 10
0.0442 11
0.0204 12
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For example,

p0(4) = p0(1, 3) + p0(2, 2) + p0(3, 1) = 0.0234 + 0.0437 + 0.0352 = 0.1023

So, the complete-data corpus expected by q := p0 is calculated as follows (see line (3) of the
EM procedure given in Definition 13)

fq(x1, x2) x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 x2 = 6
x1 = 1 3790 3735.95 2337.03 2530.23 2104.91 2290.74
x1 = 2 3772.05 4364.45 2170.03 2539.26 2821 2495.63
x1 = 3 3515.53 3233.08 1737.39 2714.95 2451.85 1903.39
x1 = 4 2512.66 2497.49 1792.29 2276.72 1804.26 1460.92
x1 = 5 3123.95 4146.66 2419.01 2696.47 2228.84 2712
x1 = 6 3966.37 4279.79 2190.88 2547.24 3164 3673

For example,

fq(1, 3) = f(4) · p0(1, 3)
p0(4)

= 10217 · 0.0234
0.1023

= 2337.03

fq(2, 2) = f(4) · p0(2, 2)
p0(4)

= 10217 · 0.0437
0.1023

= 4364.45

fq(3, 1) = f(4) · p0(3, 1)
p0(4)

= 10217 · 0.0352
0.1023

= 3515.53

(The frequency f(4) of the dice sum 4 is distributed to its analyzes (1,3), (2,2), and (3,1),
simply by correlating the current probabilities q = p0 of the analyses...)

In the M-step, we shall compute a maximum-likelihood estimate p1 := p̂ of the complete-data
model M1/2 on the complete-data corpus fq. This can be done along the lines of Examples 3
and 4. Note: This is more or less the trick of the EM-algorithm! If it appears to be difficult
to compute a maximum-likelihood estimate of an incomplete-data model then the EM algo-
rithm might solve your problem. It performs a sequence of maximum-likelihood estimations on
complete-data corpora. These corpora contain in general more complex data, but nevertheless,
it might be well-known, how one has to deal with this data! In detail: On the basis of the
complete-data corpus fq (where currently q = p0), the corpus fq1 of outcomes of the first die
is calculated as fq1(x1) =

∑
x2

fq(x1, x2), whereas the corpus of outcomes of the second die is
calculated as fq2(x2) =

∑
x1

fq(x1, x2). The following tables display them:

fq1(x1) x1

16788.86 1
18162.42 2
15556.19 3
12344.34 4
17326.93 5
19821.28 6

fq2(x2) x2

20680.56 1
22257.42 2
12646.63 3
15304.87 4
14574.86 5
14535.68 6

For example,

fq1(1) = fq(1, 1) + fq(1, 2) + fq(1, 3) + fq(1, 4) + fq(1, 5) + fq(1, 6)
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= 3790 + 3735.95 + 2337.03 + 2530.23 + 2104.91 + 2290.74 = 16788.86
fq2(1) = fq(1, 1) + fq(2, 1) + fq(3, 1) + fq(4, 1) + fq(5, 1) + fq(6, 1)

= 3790 + 3772.05 + 3515.53 + 2512.66 + 3123.95 + 3966.37 = 20680.56

The sizes of both corpora are still |fq1| = |fq2| = |f | = 100 000, resulting in the following
relative-frequency estimates (p11 on fq1 respectively p12 on fq2)

p11(x1) x1

0.167889 1
0.181624 2
0.155562 3
0.123443 4
0.173269 5
0.198213 6

p12(x2) x2

0.206806 1
0.222574 2
0.126466 3
0.153049 4
0.145749 5
0.145357 6

So, the following instance is the maximum-likelihood estimate of the model M1/2 on fq

p1(x1, x2) x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 x2 = 6
x1 = 1 0.0347204 0.0373677 0.0212322 0.0256952 0.0244696 0.0244038
x1 = 2 0.0375609 0.0404247 0.0229692 0.0277973 0.0264715 0.0264003
x1 = 3 0.0321711 0.034624 0.0196733 0.0238086 0.022673 0.022612
x1 = 4 0.0255287 0.0274752 0.0156113 0.0188928 0.0179917 0.0179433
x1 = 5 0.035833 0.0385651 0.0219126 0.0265186 0.0252538 0.0251858
x1 = 6 0.0409916 0.044117 0.0250672 0.0303363 0.0288893 0.0288116

For example,

p1(1, 1) = p11(1) · p12(1) = 0.167889 · 0.206806 = 0.0347204
p1(1, 2) = p11(1) · p12(2) = 0.167889 · 0.222574 = 0.0373677
p1(2, 1) = p11(2) · p12(1) = 0.181624 · 0.206806 = 0.0375609
p1(2, 2) = p11(2) · p12(2) = 0.181624 · 0.222574 = 0.0404247

So, we are ready for the second EM iteration, where an estimate p2 is calculated. If we con-
tinue in this manner, we will arrive finally at the

1584th EM iteration. The estimate which is calculated here is

p1584,1(x1) x1

0.158396 1
0.141282 2
0.204291 3
0.0785532 4
0.172207 5
0.24527 6

p1584,2(x2) x2

0.239281 1
0.260559 2
0.104026 3
0.111957 4
0.134419 5
0.149758 6
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yielding

p1584(x1, x2) x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 x2 = 6
x1 = 1 0.0379012 0.0412715 0.0164773 0.0177336 0.0212914 0.0237211
x1 = 2 0.0338061 0.0368123 0.014697 0.0158175 0.018991 0.0211581
x1 = 3 0.048883 0.0532299 0.0212516 0.0228718 0.0274606 0.0305942
x1 = 4 0.0187963 0.0204678 0.00817158 0.00879459 0.0105591 0.011764
x1 = 5 0.0412059 0.0448701 0.017914 0.0192798 0.0231479 0.0257894
x1 = 6 0.0586885 0.0639074 0.0255145 0.0274597 0.032969 0.0367312

In this example, more EM iterations will result in exactly the same re-estimates. So, this is
a strong reason to quit the EM procedure. Comparing p1584,1 and p1584,2 with the results of
Example 3 (Hint: where we have assumed that a complete-data corpus is given to us!), we see
that the EM algorithm yields pretty similar estimates.
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