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Two-dimensional Qusters in Grammatical Relations *

Mats Rooth

* Revised version of paper presented at Symposium on Representation and Acquisition of
Lezical Knowledge. Polysemy, Ambiguity, and Generativity. AAAI 1995 Spring Symposium
Series, Stanford University, 1995.
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1.1 Introduction

If someone asked me to explain the word “product” as used below, I might say that it refers

to things like drugs, cars, and software which are developed, produced, sold, and used.
(1) The company announced a new product.

While it is drugs, cars and software which are serving as examples of products, the list of verbs
has a role as wel. If I merely said that products were things like drugs, cars, and software,
someone would hardly be in a position to say whether toothpaste counts as a product. And a
definition of “product” as simply “something which is produced” gets a more general sense of
the word, including things such as toxic waste produced by an industrial process, and carbon

dioxide produced by human respiration.

The explanation of “product” by multiplied example involves the implicit claim that drugs,
cars, and software are all developed, and all produced, all sold, and all used. Not only is this
true, but in a large enough text corpus we can find examples examples of drugs, cars, and

software being described as being developed, produced, sold and used, in all combinations:

(2) a. 1es16892 Their goal is to develop new drugs to compete in world markets .
b. 1143501 Genzyme sells specialty chemicals used by other companies to produce drugs ,

diagnostic tests and other products and performs contract research for drug companies

c. 1222175 " We absolutely must be in the U.S. market by 1992 , " he says , " to sell the
new drugs our research labs will be producing . "

d. s3sor133a Milton Bass , a New York attorney for Zenith | asserted that the appeals
court’s ruling will spur civil suits against other drug companies that have " conducted
campaigns to frighten doctors and others not to use generic drugs . "

(3) a. sesssss2 The Europeans’ problem: the huge sums it takes to develop new cars and bring

them to market .

b. 47029320 The cight major auto makers didn’t produce any cars last weck because of the
holidays .

c. 1ms0002 " This year , for the first time , we’ve had to work to sell the cars ,
Michael J. Jackson , a Saab dealer in suburban Washington , D.C .

d. s1132866 — A halt to imports of sedans , plus a requirement that top officials use only

" says

Chinese-made cars .

(4) a. 12402011 " This settlement paves the way for the competition to develop software in the

operating system arena . "
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b. sasesers He guessed it will take Microsoft six to 12 months to produce the software
based on the Sybase technology .

¢. 3a3ss20 The company operates retail stores that sell computer software .

d. 17518185 They are writing a book to show campaign managers how to use Lotus 1-2-3

software to analyze local voting habits .

These examples are from a corpus of Wall Street Journal newspaper stories, containing roughly
60 million word-like tokens (Liberman 1992). The number at the beginning of an example

indicates its position in the corpus.

This combinatory pattern evident in these sentences is of independent interest, because
it suggests a simple way of capturing selectional patterns relating verbs to their objects, or
lexical pairs participating in other grammatical relations. In a number of problems arising in
computational linguistics, we need to be able to decide whether a given phrase is an appropriate
filler for a grammatical relation assigned by another word. This often comes down to a question
of semantic compatibility between the head of the filler phrase and the semantic role associated
with the grammatical relation. For instance, in the sentence below, resulted and approved both

have morphological readings as both tensed verbs and past participles.
(5)  The charge resulted from a settlement approved yesterday.

The morphological indeterminacy results in syntactic ambiguity. In the first structure in the
first row of table 1.1 , charge is the subject of resulted and approved a postmodifier of settle-
ment. In the second analysis, resulted is a postmodifier of charge, and charge is the subject
of approved. Deciding between the syntactic analyses below comes down, at least in part, to
a matter of semantic selection. In choosing an analysis, it would be useful to know (among
other things) whether settlement is a good object for approve (it is) and whether charge is a
good subject for approve (it is not). (Note that in terms of the underlying role assigned, the
postmodified noun phrases are equivalent to objects of their modifiers.) The sentence below

has the same ambiguity, and in this case it is the second syntactic analyis which is correct.

(6) Private-sector union contracts signed in the third quarter granted slightly lower wage

increases.

Suppose that we wanted to attack such problems using information from a training corpus.
Since thousands of verbs and nouns are involved, we can not conclude that a given verb-object
pair is impossible, simply because we can not find it in the corpus. Take for instance a slightly
more uncommon product verb such as ezport, and a more uncommon product noun, such as
engine. Although the verb-object pair export engine is intuitively plausible, it was not detected
at all by the method described below in a six million word training corpsus. A selection model

which generalizes among words has the potential of solving the problem, since while the verb
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S
NP NP VP
the charge V Dct VP NP
rcsultcd /\ the chargc /\ approvcd A
NP \/ yesterday
from /’\ rcsultcd A
Det N VP from a settlement
\
a settlement
approved yesterday

NP VP NP p
private-sector union contracts  V pp NBAR VP v NP
| |

sigaed /\ A /\ ganted
P NP private-sector union contracts  V PP slightly lower wage increases
|
in signed
Det NBAR i3 in the third quarter

|
the
third quarter V NP
|
granted

slightly lower wage increases

Table 1.1: First row: corrext and incorrect syntactic analyses for sentence 5. Second row:

incorrect and correct syntactic analyses for sentence 6.
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acquire| 16 1 1 2 35 5 77 87 29 19
boost 1 1 2 118 11 39 21 5 28 59 10 1 19 1
buy| 16 2 2 48 2 53 1 36 348 107 190 29 2
climb 8 1 2 10 13 1
cut 104 10 11 1 66 64 11 5 2 30 5
decline 23 18 2 1 13 9 16 1 3
drop 1 11 19 2 1 2 30 9 6 5 7
dump| 1 3 2 10 10
fall 21 132 1 2 14 171 38 33 1 28
gain 20 3211 62 9 25 1 25 28
hold| 18 7 1 122 3 5 68 121 30 3 1
increase 6 3 2 25 5 26 8 1 3 26 36 2 1 36 75 2 11 16
jump 2 3 2 8 9
lower 20 2 1 23 83 55 16 1 2 4
plunge 3 2 1M 1 2
purchase 8 5 2 117 6 95 24 20 6
push| 1 2 2 1 1 3 44 20 104 6 1 1 2 1
raise 23 528 85 131 149 26 5 74 16 11
reduce| 9 1 1 76105 3 5 122 55 8 9 41 226 21
retain 1 1 13 17 21 1 3 1
rise 13 9 136 18 2 2352125 18 19 1 1 1 222
sell[114 2 1 40 6 72 2 1 12 8 48 243 144 149 104 2
slash 17 4 9 20 6 1 1 3 3
trade 1 1 2 2 2 9 7 22 2 37 5 1

Table 1.2: Frequency counts for 24 verbs and 24 object heads.

export ezport does not occur with engine, it occurs with other product nouns, and engine

occurs with other product verbs.

The purpose of this paper is to develop a mathematical and computational model which
captures the notion of a selectional dependency between a set of verbs and a set of nouns, or
more generally two sets of words participating in a grammatical relation. Section 2 describes
a simple categorical selection model, which in section 3 is given a probabilistic twist. Locally
optimal probabilistic models can be generated by an incremental procedure similar to Baum-
Welch reestimation of hidden Markov models. In section 4 we look at results for a reasonably
large sample of verbs an nouns. Section 5 discusses applications of the probabilistic model,

giving preliminary results for a parsing problem.

1.2 Categorical selection types

Table (1.2) is a matrix of frequency counts for verb-object occurrences of twenty-four verbs
and twenty-four nouns. The table is a sub-part of a verb-object matrix derived from an ap-
proximately 6 million word sample of the Wall Street Journal, parsed by Donald Hindle with
his Fidditch parser.! I extracted verb-noun pairs with a Lisp program from list representations
of parses, and mapped them to uninflected forms using a full form word list. The resulting

list contained 84182 non-zero frequency counts. The frequency matrix was reduced by elimi-

!The parser is described in Hindle (1983) and Hindle (1994). Similar verb-object data is discussed in Church
et al. (1991).
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acquire| 16 3 5 77 87 29 19 1 1 2
buy| 16 48 53 36 348 107 190 29| 2 2 1 2 2
dump 1 3 2 10 10
hold| 18 7 22 5 68 121 30 3 11 3 1
purchase 8 517 6 95 24 20 6 1 2
retain 1 13 17 21 1 3 1 1
sell|114 40 72 48 243 144 149 104| 2 1 2 1 2 6 12 8
trade 1 2 7 22 2 37 5( 1 2 1 2 9
climb 8 210 13 1 1
decline 1 3 2 3 18 13 2 1 9 16
drop 1 11 1921 2 30 7 9 6 5
fall 1 21132 1 2 14 171 28 38 33
gain 3 25 4 20 2 11 62 28 9 25
jump 2 3 2 8 9
rise 2 1 1 1|13 9 136 2 3 52 125 22| 18 18 19 2
plunge 2 3 2 14 4
boost 11 28 59 10 1 1 11 2 118 39 21 5 119
cut 5 2 1 104 10 11 66 64 11 30 5
increase 6 8 1 36 75 2 3 2 1 3 25 526 26 36 2 11 16
lower 1 16 1 20 2 23 83 55 2 4
push 1 2 1 1 4 16 1| 2 3 1 1 441 20 1 2
raise 8 5 74 5 1| 23 5 28 131 149 26 46 11
reduce 9 5 9 41 2 1 1 1 76 105 3 22 55 8 26 21
slash 1 1 17 4 9 20 6 3 3

Table 1.3: The same counts in another order.

nating rows (corresponding to verbs) with fewer than five non-zero entries, and subsequently
climinating columns with fewer than five non-zero entries. This gave a matrix indexed by 992
verbs and 1027 nouns, containing 55251 non-zero entries. The verbs and nouns in the 24 x 24

sub-table were sclected by hand for illustrative purposes.

Re-arranging the rows and colums in the small table brings out a dependency between
the rows and columns. In table 1.3, most of the non-zero entries are in the three blocks on
the diagonal. We can think of the block organization as capturing three semantic selectional
types within this part of the verb-object grammatical relation. The first block corresponds to
a notion of exchange of financial instruments or ownership interests. The second block involves
measurement of a scalar motion by some dimensioned quantity, and the third block involves
change in some scalar quantity, such as a stock price. To represent the blocks, we need not
re-order the matrix: we can equate a block with a pair of a subset of the verb set and and a
subset of the noun set. A closer examination shows that it is not reasonable to insist that the
noun sets for different blocks be disjoint. The noun stake occurs fregently with the verbs of
the third block (e.g. boost, increase, raise, and reduce), as well as with the verbs of the first

(c.g. acquire, buy, sell, and trade). Here are some example sentences:

(7) a. 1721999 Most of Japan’s big computer companies hold a 1% stake in Ascii, and Mitsui
& Co., one of Japan’s largest trading companies, plans to boost its stake to 5%.
b. 1266211 Though Koito is resisting, and Mr. Pickens has announced plans to increase his

stake to 26%, he maintains "there’s nothing hostile" about his investment.
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c. 1e00311 Ford will raise its Jaguar stake to the maximum 15% after the 30-day waiting
period expires, the Ford executive said.

d. 20s1122 The sales reduce the group’s stake to 740,500 shares.

(8) a. smeerr Galesi Group said it is secking to acquire Lone Star Technologies Inc.’s stake
in American Federal Bank for $58 million.

b. 1024551 The Italian financier is close to announcing that he’s setting up a holding
company to buy controlling stakes in Hungarian companies, according to Hungarian
sources.

c. 266376 Domino’s Pizza owner Thomas Monaghan may sell his 97% stake in the chain,
which is the nation’s largest pizza delivery company.

d. 4287202 One possibility would be for the U.S. group, formally called Newgateway PLC,

to trade its troublesome stake to Isosceles for certain Gateway assets.

The reason for the overlap is that a stake (say in a company) is both something which can be

bought or sold, and a scalar quantity which can be increased or decreased.

The verb increase is in principle a symmetric example, though this is not really obvious
in these data. It occurs both with objects denoting a changing scalar quantity, and with a

objects (or pscodo-objects) measuring that change:

(9) a. esearrs Jack W. Forrest, Environmental Systems president and chief executive officer,
said the change increases the company’s effective tax rate to about 35% from 20%.
b. 1se104s If Mr. Wanniski’s theory is right, that a tax cut increases the value of capital
assets held by owners, wouldn’t that increase also represent a rather dramatic and
totally unjustified inflation of those values?
c. aozres Georgia Gulf said it increased the exercise price of the rights to $120 from $50.

d. ss7seso "It has increased the level of caution in the market," said the Chicago trader.

(10)a. ssarsso Economists said the August civilian unemployment rate will have increased 0.1
percentage point to 5.3%.
b. sssw70 Unleaded-gasoline futures were mixed, although the September contract in-

creased 0.22 cent to settle at 54.15 cents a gallon.

In the latter group, the changing scalar quantity is realized as subject.

Given two vocabularies V and N, we define a selection type as a pair (V', N'), where
V' CV and N’ C N. A selectional model is simply a set of selectional types, and given what
was said above, we should not impose any requirement of non-overlap for the noun sets or

verb sets of a selection model. A reasonable selection model for the 24 x 24 frequency matrix
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acquire buy asset bond
dump hold interest security
purchase retain "] share stake stock

unit

(S:filrlnb decline

dron fall eai average bit cent
< rop 1l gain , < foot mark pence >

j ise pl
jump rise plunge point yen
cost debt

< boost cut increase dividend price >

increase

lower push raise , § rate rating tax

reduce slash value share stake

\ stock
1.3 Probabilistic selection types

The above construction, because it is categorical, encodes no information about the relative
freqeuncy of, for instance, buy and dump as verbal realizations of the first selectional type. In
applications, having access to graded information is useful, in that it allows the large numbers
of analyses — such as syntactic parses — to be ranked. Futhermore, once we get beyond
simple examples, it is not clear that membership in selectional patterns should be considered
discrete.? Among ways of introducing graded distinctions, probabilistic models are appealing,
because they have the potential of telling us, in complex situations, how a number of graded
distinctions are to be combined. The simple recipe for turning a categorical model into a
probability model is replace characteristic functions of sets with probability distributions. In
the present case, we redefine a selection type as a pair of discrete distributions, one on the

verbs and one on the nouns:?

<)"Up;7 )\np;rl) Zvevpg =1 ZneN p; =1

The function Avp], maps a verb to a number in the interval [0,1], meeting the constraint
that the set of verb probalities sums to one, and similarly for the nouns. In order to use this
notation, we must assume that the verb, noun and type sets are (or have been rendered)

disjoint: we do not want to identify the verb probability pf ... v with the noun probability

2Furthermore, I did not say what makes one categorical selectional model better than another, and how they
are to be discovered computationally. I have experimented with an incremental search for selection models,
using a Solomonoff-Kolmogoroff-Chaitin measure to evaluate the combination of the complexity of the model
with the complexity of describing the data matrix given the model. I will not describe this method here, since
the search was computationally expensive, and the results only moderately encouraging.

3\vp] generates a probability distribution AX > vex Py measuring subsets of V. In the text, I surpress the
distinction between discrete probability distributions and their generators.
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type 1.204 type 2 .315 type 3 481
fall .34 point .364 Taise .265 rate 238 sell 319 share .340
rise .343 cent .281|| reduce .189 price .207 buy .288|  stake .198
gain .128| pence .080 cut .162 cost .143 hold .095|  stock .172
drop .059 yen .071 lower .109| stake .108|| acquire .093| interest .078
decline .038 price .060 || increase .100 debt .071||purchase .063 asset .065
climb .028 rate .059 boost .073 tax .063|| increase .030 unit .059
jump .020 tax .021 push .036| rating .059 trade .027 | security .038
plunge .019| average .017 slash .034 |dividend .050 boost .024|  bond .037
increase .006 cost 016 sell .010| value .044|| retain .019 debt .004
push .005 bit .011|| decline .009| interest .006 gain .011 price .002
trade .003| mark .011 drop .006| stock .003 dump .009| average .002
reduce .002 foot .004 trade .005| mark .003 push .009 yen .002
boost .001|  stock .002 hold .002| average .002|| reduce .008 bit .001
sell .001| value .002|| retain .001 asset .002 raise .003| mark .001
cut .001| interest .002|| acquire .001 yen .001(| decline .001 foot .001
hold .001 unit .001 gain .000|  share .000 rise .001|  value .000
raise .000 asset .000 rise .000|  point .000|| plunge .001 rate .000
buy .000| share .000|| plunge .000 cent .000 drop .000|  point .000
slash .000| rating .000 fall .000| pence .000 slash .000 cost .000
lower .000|  stake .000 climb .000|  bond .000 lower .000 cent .000
acquire .000 debt 000 || purchase .000| security .000 cut .000 |dividend .000
purchase .000 |dividend .000 buy .000 bit .000 fall .000 tax .000
retain .000| security .000 jump .000 unit .000 jump .000| pence .000
dump .000|  bond .000 dump .000 foat .000 climb .000| rating .000

Table 1.4: Parameters of a sclection model.

Pinerease /N We also add a probability distribution over the types. Using an initial segment of
the natural numbers to index the types, a probabilistic selection model for V and N with &
types then consists of a probability distribution A7p, over the set of integers {1,...,k} (=T),
and for each type 7 in {1,...,k}, a pair of probability distributions (Aup], Anp]), as described

above.

Derivatively, for any type 7 we construct a probability distribution on V' x N as a product

Py = PoPn

We constuct a probability distribution on T' X V' x N as a disjoint union of these products:

Pron = p‘rp:;p;r:
Such a model can by used to assign probabilities to verb-object pairs. In the probility space

just defined, if a verb-noun pair is generated, it is generated in some type, and we obtain the

probability for the verb-noun pair by summing over the types:

Pon = Zpr,v,n = ZPTPZP;
T T

In section 5, such probabilities are used to compare two grammatical analyses. Table 1.4 gives
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type 1 .204 type 2 .315 type 3 .481
fall .344] point .364 Taise .265 rate 238 sell 319| share .340
rise .343|  cent .281|| reduce .189 price .207 buy .288( stake .198
gain .128| pence .080 cut .162 cost .143 hold .095| stock .172
drop .059 yen .071|| lower .109 debt .071|| acquire .093| interest .078
decline .038|average .017 ||increase .100 tax .063||purchase .063| asset .065
climb .028 bit .011| boost .073| rating .059 trade .027|  unit .059
jump .020| mark .011 push .036|dividend .050|| retain .019|security .038
plunge .019|  foot .004 slash .034|  value .044 dump .009| bond .037

Table 1.5: The same model, with verbs and nouns represented only where they are most likely

to be generated.

the parameters of a sclection model of order three for the 24 x 24 data.* Notice that the noun

stake is ranked high in both the second and third types.

Estimating a model

Given a selection model and observed verb-object pair {v,n), the probability that it is gener-
ated in type 7 is:
Pron
Pon
Multiplying by the frequency fyn, we obtain the expected number of occurrences of the event
(7,v,n) given the observed frequency and the model:
€ron = fu,nM
Pun

This forms a basis for re-estimating the probability parameters:

€rp = Zn €ron  €rn = Zv €ron €1 = Zv,n €ru,n

T €rv T €rmn e’

9y = = In = qr = Do fow

The probabilities g, the parameters of the new model, are computed as relative frequencies
of expected numbers of events, as determined by the old model. For instance, the probability
of the verb fall within type 1 would the expected number of occurences of fall in that type
(given the data and model), divided by the expected number of occurrences of that type of

verb-object pair.

The formulas are similar to the Baum-Welch re-estimation formulas for hidden Markov
models (Baum 1972).> Adapting Baum’s result for HMMs, it can be shown that an iterative

10r rather, as one can discover by summing the first column of numbers, the approximate parameters.

5Selection models as described here can be viewed as zero-order HMMs, augmented with a second surface
vocabulary and associated emission probabilities. That is, given a state (or type), two surface symbols are
independently generated. Furthermore, as used here, the types are hidden in the sense that they are given no
prior interpretation, and are not observed in the data.
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re-estimatiom of parameters produces local improvements in the probability of the observed

X . . . type 1 .015 type 2 .021
data given the model, and converges to a local maximum of this probability. Table 1.4 was meet 23606  standard 06597 end 10515 year 11873
. . . . . . . set .15089 record .05207 trade .07562 Friday .09733
derived in one hundred iterations starting from a random state, using the frequency data in be 04807 goal 01920 say 06728 week 08977
. . . .. keep .04205 need .04453 work .06685 month .08074
table 1.2, Table 1.5 is a different way of looking at the same model: each verb or noun is is hit .03637 | requirement .04152 begin .06120 day 06488
. .. . . T T . miss .03403 level .03564 spend .05976 time .04695
shown only in the type where it is most likely to be generated, i.e. where p;p? (or p,p?) is exceed 03322  demand 03168 ||announce 02880 today 01067
. . . . . reach .02533 target .02963 close .02638 Tuesday .03573
maximal. This representation reconstructs the three eight-by-eight boxes of table 1.3. achiove 01923 hfgh ‘02828 open 02420 e oaast
fulfill .01518 stage .02675 start .02219 Monday .02724
satisfy .01330 pace .02155 expire .01716 way .02458
live .01241 date .01860 mark .01618 | Wednesday .02287
. surpass .01163 payment .01819 last .01545 capital .02116
1.4 Results for a larger data matrix establish .01126 | expectation .01764 wait .01396 talk .01933
stress .00919 point .01623 follow .01147 night .01526
eliminate .00858 limit .01598 serve .01117 war .01030
B B - 0 1; 3 .032 4 .029 1; 5 .035
Storage requirements for the estimation algorithm are modest. There are |T'||V|+ |T||N|+|T| — T — — T e
probability parameters. The re-estimation formulas sum over non-zero frequencies, and the develop .09296|  system .01459||  begin 05617 effort 077031 finance 05656/ acquisition .06132
produce .08613 drug .03406 launch .04128 program .06099 include .04693 |transaction .05817
expectations can be computed by summing iteratively over such frequencies. In each step, a introduce 03273 | technology 03110 conduct .03157|  campaign .02961 be .03700|  change .04977
market .02933| computer .02236 resume .02845 production .02943 say .03244 purchase .04142
frequency f,  is apportioned among the types according to the ratio Pﬁv,n’ and the portion for sell .02778| country .01948|| expand .02528 |investigation .02209|| approve .03176 merger 03092
? Pv,n include .02140 car .01875 start .02476 service .02029 || represent .02703 order .02709
a type 7 is added to running subtotals of e;, and e; . This procedure requires intermediate ship 02109 ] equipment 01685 be 02280 process 01670 |announce 02536 | increase 02616
’ B supply .01770 line .01666 say .02159 work .01508 block .02272 action .02278
storage of the same size as the probability model. Since no random access to the frequencies is get .01602|  version .01500 halt .01456 | negotiation .01414|| consider .02208|  takeover .01939
distribute .01149 machine .01410 follow .01335 payment .01407 involve .01758 project .01827
required there is no need to represent a V' x N matrix. (This might turn out to be useful. In a test .01145|  proceed .01308 ban .01304 activity .01383| propose .01702 issue .01792
manufacture .01107| program .01230|| restrict .01189 practice .01290|| explore .01670 offering .01475
larger data matrix based on 60 million words of text, about 3500 verb roots occur with five or promote .01035 ton .01226 || support 01187 talk .01264 || expect 01570 move .01278
. R install .00983 software .01178 oversee .01148 | development .01256 follow .01496 use .01205
more different nouns, and about 7500 noun roots, not counting proper nouns or numbers, occur build .00971|  model .01146 lan 01115 use .01224|| discuss 01474 investment .01098
. . . . . type 6 .021 type 7 .023 type 8 .041
with five or more verbs. One of these numbers would be multiplied if verbs with complements e 11736 sait 11120] [ play 09036 money 20670 aise 17768 Srice 15318
. d b e . l d d . follow .09798 case .06304 ||spend .07740 $ .07810 increase .09248 rate .15152
accompanied by prepositions were included as separate cntrlcs.) settle .04932 report .06176 || raise .05364| role .05575 boost .07753 stake .04731
deny .03748 decision .04991 be .03725 fund .05401 reduce .04806 question .03490
The algorithm was implemented in Common Lisp. Tables 1.6, 1.7 and 1.8 give the most issue .03688 charge .04782|| get .03375| cash .03552 lower 04484 rating .03018
hear .03011 lawsuit .03991 lose .03372 lot .02660 cut .03509 value .02881
probable nouns and verbs in each type of a probabiity model for the 992 x 1027 matrix with say 02876 statement .03674|| cost .03356| time .02655 say 02377 sale .02544
. . . . . dismiss .02466 appeal .02439 save .03059| dollar .02612 offer .02240 earning .02379
thirty-two types, obtained with four hundred iterations. The three blocks of 1.3 are represented bring 02329 complaint .02390 (| use .02727| part .02037 push .01979|  number .02363
R . . . i . be .02301 claim .02312|| put .02145 |million .01805|| expect .01605 level .02135
here: type 3 is the product type (e.g. develop software), changing dimensioned objects (raise confirm 02157 allegation .02142|| lend .01760| game .01680 keep .01107|  dollar .01719
. . . . . . appeal .02020 ruling .01916|| pay .01726|capital .01508 || disclose .01198 capital .01707
price) are in type 8, and scalar increments (rise cent) in type 26. Type 30 is a related one include .02019 plan 01561 ||invest .01698| total .01425|| double .01191|  revenue .01661
. . . . . review .01744 action .01490|| need .01668 | billion .01380 || answer .01182 size .01569
where the object typically denotes a scalar motion event, such as a decline or an increase. reverse .01527 rumor .01405|| give .01620|  life .01291|  bring .01062 cost 01369
. . . see .01521 |recommendation .01402 add .01526 year .01152 || maintain .01042 [ production .01367
The nouns of types 19 and 29 primarily name people. In the nouns, the split scems to amount pe 5 035 e 10 011 e 11 02
P . . . . reject .08033 bid .15795 hold .42625| company .29762 pay .21425 cost .13843
roughly to a dlStlnCtlon thWCCH powcrfuL aCtlve pCOplC (CXCCuthCS, laWyCI'S, OffiCIals) and consider .06539 proposal .11781 acquire .04866 meeting .09623 reduce .14585 debt .08962
H H H accept .05285 offer .11493 call .04400 stake .05578 cut 09985 tax .05801
weak or passive ones (workers, clients, and sharcholders). Looking at the verbs, the type 19 — 03535 lan 00008 || attend 02080 o onre e aana|  dividens ‘oamon
pCOplC are appointcd and rcplacod; thC tpr 29 pCOplC are givcn OI‘dCI‘S and pCI‘miSSiOIlS.6 decline .03064 comment .03193 ||schedule .02436 hearing .03762 . cover .02748 price .03451
drop .02975 request .02591 leave .02433|conference .03723|| include .02187 $ .02684
. . close .02525 idea .02331 say .02301 position .02211 be .01433 fee .02370
Several types are dominated by a common and semantically empty verb, such as be (12), submit .02401|  attempt .01774 tell .02173| election .01934|| repay .01355 expense 02319
. . be .02389 claim .01346 force .02111 concern .01578 slash .01313 deficit .02154
have (23), or make (31). In these cases, the noun sets are not intuitively coherent, presum- receive .02352 effort 01319 || follow .01705 | discussion 01867 ||  keep .01256| interest .01911
. . — approve .02158 issue .01301 be .01290 post .01207 limit .01225 bill .01868
ably because these verbs impose such weak sclectional restrictions. The verb sets are not launch 02135  strategy 01216 mine 01207 stock 01060 || control 01161 loan 01818
. . . . back .01941 option .01175 control .01057 hostage .01017 avoid .00944 |capital-gains .01785
particularly coherent either, though this is balanced by the fact that most of the verbs have withdraw 01771 | application 01093 seck 00993 party 00770 trim .00897|  premium 01715
1 b b.l.t. Th b 1 . th t f . t b . t review .01711|amendment .01044 expect .00783 session .00729 raise .00868 amount .01678
Ow probabilities. €sC common Vverbs also occur in many other types, Ior istace oe mn top announce .01688 $ .00988 value .00756| interest .00715 || collect .00847 force .01579

ition in t 32, which i intuitively coherent type.
posthion i type 22, Whichi 18 an mtutively coherent type Table 1.6: Part of a 32 type selection model.

5In verb group 19, a number of items resulting from parsing errors are evident. Presumably, manage comes

from managing director misidentified as a verb phrase.



AIMS VOL.4 NO.3 1998
type 12 .093 type 13 .025 type 14 .030
be .86747 part .03981 do 20110  business .15112 show .10237 interest .07597
become .02744 way 02670 run .10726 job .09334 reflect .05022 growth .05279
find .01918 time .02601 be .09109 thing .05915|| express .03955 value .03758
see .00639 | president .02516 create .06320| company .03691 see .03130 economy .03269
give .00600 | company .01500 form 05178 work .03633|| improve .02787 concern .03047
include .00383| reason .01314 leave .03496 venture .02406 slow .01795 demand .03012
get .00316 lot .01245 get .03188 lot .01903 say .01794 sign .02552
identify .00295| problem .01181 find .01891 [government .01850 || enhance .01611 | performance .02153
remain .00257 |chairman .01181 start .01579 fund .01547 || continue .01535 return .02080
cite .00242 issue .01158 see .01489| program .01358|| pursue .01512| confidence .02062
represent .00222 case .01024 | eliminate .01072 deal .01143 grow .01505 ability .02002
seem .00217 unit .00933 keep .00987 ad .01139 fuel .01503 strength .01637
prove .00217 sign .00926 lose .00979 risk .00082|| indicate .01160 inflation .01435
allow .00201 thing .00897|| expect .00978 year .00949 cite .01430 benefit .01353
want .00200|  target .00818 enter .00822 system .00826 ||represent .01363 suppart .01348
mark .00197 | question .00776 || establish .00798 room .00784|| expect .01304|improvement .01302
type 15 .022 type 16 .016 type 17 .020
reach .14872|agreement .23792 send .13358 letter .06276 || increase .08773 market 25364
sign .11051 plan .15152 carry .08868| dividend .05273|| expand .07881 pressure .06255
announce .08203 bill .08091 receive 06219 warrant .01434 put .06053 business .03365
approve .06145| contract .04619 write .05310|  message .03976 enter .05256 board .02518
pass .04008 | legislation .03891 declare .04667 book .02798 be .03619 capacity .02433
be .03342 letter .02473 get .04335 note .02597 grow .02317|  industry .02232
negotiate .02940 accord .02395 publish .03554 signal .02243 tap .01821 |membership .02207
say .02620 |settlement .02249 issue .02821 stock .02046 ||dominate .01791 line .01559
introduce .01946 deal .01928 read .02800 article .02037 keep .01595|  economy .01522
terminate .01562| measure .01622 deliver .02297 |information .01688 open .01550 area .01442
spend .01310 pact .01516 include .01517|  sentence .01583 serve .01435 base .01225
veto .01293| package .01450 serve .01473 ad .01531 hit .01415 end .01221
adopt .01238 level .01253 ||subordinate .01435 price .01447 putt .01408 | competition .01185
propose .01171 | resolution .01110 see .01412 news .01350 affect .01397 country .01128
forge .01142| program .01028 suspend .01406 report .01294 bring .01250 sale .01123
discuss .01008| decision .00951 regard .01123 copy .01098 help .01201 head .01119
type 18 .021
violate .07151 law .08733
impase .04621 right 08309
adopt .01096 rule .07114
ease .03129 policy .05715
exercise .03047| provision .04352
include .02075| restriction .04050
tighten .02341 credit .03410
propase .02050 ban .03290
enforce .01916| regulation .02586
use .01698 security .02519
change .01655 control .02277
break .01621 option .02191
extend .01587| standard .01958
lift .01441 |requirement .01490
oppose .01376 tax .01227
remove .01323 duty .01227
type 19 .031 type 20 .015 type 21 .016
say .26679] director .08356 assume 05587 position .12880 join .12423 firm .13008
become .11146| president .06178 fill .04523 account 06505 lead .00514|mortgage .06931
manage .07970 official .05558 retain .04154 control .04908 cap .07303 group .05734
be .06651| analyst .04518 return .03565 power .04743 bank .07174| company .05733
remain .05788| chairman .04351 be .02827 image .01092|| consult .06777 | attention .05347
tell .03499| executive .04324 share .02387 | responsibility .03439 head .05825| concern .03268
include .03194| manager .03607 ||strengthen .02213 post .03189 draw .04459 force .02034
name .02965| partner .02709|| maintain .02148 call .03184 || indicate .03417| coupon .02364
hire .02161| member .02248 seize .02047 view .01745 || engineer .02217 list .02076
market .01336 trader .01837 bear .01857 home .01714 trade .01944 | indicator .01819
act .00933 board .01599 change .01815|  ownership .01703|| attract .01666 unit .01787
elect .00929 firm .01408|| improve .01648 job .01595 form .01528 office .01772
oust .00921 lawyer .01362 use .01636 order .01501 stage .01513 board .01306
ask .00854| company .01347 shift .01626 name .01296 focus .01419 [operation .01214
appoint .00786 | consultant .01221 place .01532 title .01296 turn .01066 team .01078
replace .00770|  banker .01196 bolster 01465 seat .01233 || create .01065 way .01048

Table 1.7: Another part.
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type 22 .025 type 23 .053 type 24 .058
operate .23595|  officer .08099 have .88786 loss .03589 sell .21706 share .17737
build .12124 plant .08029 be .02008 share .03026 buy .21141 stock .09721
open .05096 profit .05795 say .00934 effect 02858 || acquire .06323 stake .06503
close .03310| system .04020 get .00734| impact .02606 ||purchase .04274 | company .03334
manufacture 02073 store .03467 lose .00644 sale .02217 own .03560| interest .03095
keep .02182| facility .03319 see .00606 | interest .02082|| include .03528 asset .03044
run .01790 |operation .02793 limit .00577| income .01999 total .02347 unit .02787
turn 01747 office .02522 lack .00458 | problem .01842 hold .02227 bond .02452
establish .01689|  center .02376 || increase .00432 right .01549 be .01894| business .02242
move .01551 car .01748 cite .00375 plan .01473 issue .01459 | security .01817
be .01425| company .01672 cast .00366 time .01334 prefer .01360 |operation .01475
fly .01396 home .01634 add .00228| chance .01282 trade .01205 dollar .01390
expand .01335 door .01471|| exceed .00220| trouble .01257 || retain .00957 ton .01164
say .01300 mile .01144 feel .00208 [comment .01108 offer .00840 issue .01091
maintain .01149| building .01131 ||consider .00198 value .01099 || receive .00702| product .00996
lease .01147 eye .01127|| mean .00194 asset .01065 || increase .00684 car 00955
type 25 .031 type 26 .054 type 27 .029
Teceive .15526 | approval 09046 rise .22003 % .74167 || provide 22624 service .05067
get .14544| contract .08712 yield .13168|  point .07754 offer .11291 way .01967
win .11622| control .01008 fall .12219 cent .05860 || change .08438|information .04529
seek .11268 order .02775 be .08785 yen .01537 give .06825 detail .01282
gain .07195| support .02298 own .03445| pence .01498 find .04567 hand .04176
obtain .03624 share .01816 drop .02092|  price .00969 ||disclose .03263 name .02648
give .02811| damage .01665|| jump .02585 rate .00935 get .03251 data .02517
require .02492| license .01196 grow .02474 year .00776 be .01960 benefit .01551
lose .02422|  access .01461 ||increase .02322| average .00451 seek .01937 term .01436
need .02124 help .01358 || climb .02222 cost .00328 || discuss .01320| incentive .01346
loose .01948| benefit .01258 || decline .02001 bit .00276 use .01279 figure .01076
grant .01426 vote .01237 gain .02001 | demand .00253|| clear .01147| evidence .01069
demand .01242 right .01227 hold .01557 ton .00250|| include .01115 $ .01045
secure .01030 loan .01140 buy .01167 fee .00244|| obtain .01086 loan .01006
award .00975 |attention .01126|| acquire .01089 |inflation .00244 need .01085 reason .00998
await .00788 boost .01075 soar .00896| range .00231|| release .00801 record .00987
type 28 .025 type 29 .052 type 30 .037
take .71341[ yesterday .08897 allow .05595] company .07287|| report .19567 loss 17676
trade .21074 place .06415 give .01996 people .05791 post 12245 gain .10309
handle .00380 |advantage .05361 tell .04769|  investor .04724 say .07210| earning .09973
offer .00343 step .04657 help .04348 |government .02802|| expect .05355| profit .08199
call .00334 action .03615 ask .03068| customer .02600 || include .04197| income .05284
include .00324 effect .03290 require .02369| employee .02555|| operate .02780 sale .04715
see .00264| volume .03119 say .02168 worker .02435 show .02579| decline .04575
find .00205|  charge .02457 attract .02134 client .01987 ||attribute .02379 |increase .04519
offset .00204| control .02322 force .02101 bank .01928 follow .02049| result .04247
represent .00179| position .01873|| represent .02067 shareholder .01102 have .01666 rise .02073
enjoy .00148 year .01862|| protect .01823 agency .01363 || generate .01453|  drop .02688
remain .00146 profit .01806 leave .01805| consumer .01271|| produce .01249 | revenue .02411
accept .00121 look .01770 urge .01768 group .01270 be .01199| event .01580
give .00120 time .01435 keep .01565 state .01254 see .01023 net .01198
overcome .00117 risk .01336|| include .01482| reporter .01234|| reflect .01005| return .01168
note .00112 part .01320 ||encourage .01475 court .01153|| estimate .00984| charge .00803
type 31 .020 type 32 .029
make .83180| decision .05421 be .11257 problem .14799
say .01986 money .03619 face .08331 issue .02183
call .00735| payment .03542| cause .04889 pressure .02099
see .00696 sense .03247 || resolve .02475 damage .02080
expect .00582 bid .02889 || solve .02389| recession .01835
accept .00552 offer .02289|| avoid .02373| challenge .01664
welcome .00513|  product .02105 ||address .02302| situation .01663
use .00451 change .02097 fight .02070 effect .01617
avaid .00400 loan .01927 || create .02057 |competition .01527
leave .00360 move .01693 pose .01971 threat .01394
keep .00357 profit .01682 || reflect .01856 risk .01369
affect .00315 |investment .01484 see .01673 concern .01343
guarantee .00209 | difference .01479 || prevent .01505|  question .01327
cancel .00278 effort .01280 ecase .01416 crisis .01323
defer .00277 | statement .01278 || suffer .01230|  shortage .01284
reflect .00250 § 01184 cite .01236 crime .01239

Table 1.8: Still another part.
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1.5 Application to parsing

A casual examination of clusters can at most suggest that the right sort of thing is going
on; the point is to use such representations to do something that we want to do for an in-
dependent reason. In the introduction, I said that resolving many parsing ambiguities comes
down to evaluating selectional compatibility between two lexical items. Given a probabilistic
selection model, we can assign a probability to any verb-object pair drawn from the lexicon
of 992 verbs and 1027 nouns. In order to evaluate parses, we need to include other grammat-
ical relations. In some cases, such as subjects, this is fairly straightforward. In others, such
as second complements of verbs, getting access to frequency counts is not straightforward,
since identifying second complements — such as prepositional phrases — requires resolving
attachment ambiguities. This can not be done systematically without the kind of lexical in-
formation we are trying to induce. Presumably, a procedure learning selectional restrictions
for second complements would have to initially consider several attachments, and iteratively
learn the lexical information required for disambiguation. This method is applied to simpler
data (paying attention just to prepositions and not the heads of their objects) in Hindle and
Rooth (1993).

To investigate the possibility of disambiguating syntactic ambiguities with selectional in-
formation, I considered the past participle vs. tensed verb ambiguity of sold in positions im-
mediately following a noun phrase. In the first example below, sold is a tensed verb, and the
preceding noun administration is the head of its subject, describing the agent. In the second
example, sold is a participial post-modifier, and the preceding noun phase denotes the sold
object.

(11)a. 10e0as1s evidence that the Reagan administration sold arms to Iran

b. 3001228 represented payments for arms sold to Nicaraguan insurgents

The situation is actually more complex, since sold occurs frequently in the middle construction,

with a syntactic subject filling the semantic role of a sold object, rather than the seller:
(12) 2079022 The franchise sold in 1979 for $11 million

To sidestep this problem, I defined the problem to be solved as one of identifying the semantic
relation (seller or sold object) of the noun phrase, rather than identifying a grammatical
relation or part of speech. In other words, the middle constructions are grouped with the
postmodifiers. By hand, I classified the first relevant occurrence of each noun-sold pair in the
full Wall Street Journal corpus from Liberman (1992). Of the 1027 nouns in the model, 220
were represented in this configuration, of which 87 were past tense verbs, 118 were participial
postmodifiers, and 15 middle constructions. An augmented selection model was obtained (in
a somewhat ad hoc way) by adding two additional verbs sold/VBN and sold/VBD to the
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offering .13354 metal .14244 apartment .14495 stock .14550
franchise .15312 membership .16785 future .19601 seat .27562
price .43852 hundred .44699 conference .49000
other .57470 thing .65876 target .99409 run .99997

Table 1.9: Disambiguation scores for middle constructions. Items above the line are correctly

classified.

verb set. Training material consisted similar but independent data.” The model was used to
classify the 220 test examples by means of the ratio:
Psold/VBD,n
Psold/VBD,n + Psold/VBN,n

Pairs with a score greater than 0.5 were assigned to the seller role, and those with a lower
score to the sold object role. Of the 118 post-modifier pairs, 110 were correctly classified into
the sold object role. Of the 87 ordinary subject-verb items, 69 were correctly classified into the
seller role. Of the 15 instances of the middle construction, 11 were correctly classified into the
sold object role. This gives an rate of correct classification of 86.4%. The disambiguation scores
are listed in tables 1.10, 1.11, and 1.9. Appositely, the least ambiguous instance of the seller
role is the noun seller. The least ambiguous example of the sold object role is output. Many
of the problematic nouns — those with scores below 0.5 in table 1.11 — name institutions
which can be agents, but can also be bought and sold, for instance company, airline, and
store. Since companies are actually described in the Wall Street Journal both as being sold
and as selling things, we would not expect a selectional approach to be uniformly successful
in this case. However, we want to resolve clear cases correctly — artefacts, materials, and
financial instruments are unambiguos sold objects, and people are unambiguous sellers. With
few exceptions, such clear cases are resolved correctly.

1.6 Matrix formulation

The definition of p,, from section 3 can be written as a matrix product. Let L be the V' x k
matrix representing the verb probabilities, L;» = p] , let R be the N x k matrix representing
the noun probabilities, R;, = pj, and let D be a diagonal matrix representing the type
probabilitics, D;; = p,. Then a derived probability distribution on V' x N is given by a

matrix product:
LDRT [Lv/tDt/t[RyTl\/t}t/n]v/n (11)

In the version on right, the subscripts give matrix dimensions in categorial notation, v being
the verb cardinality, ¢ the type cardinality, and n the noun cardinality; R” is the transpose of
the matrix R, [RTL',]' = R]',i.

"In writing this section, I found that the training data and my record of how they were constructed had
been lost. Therefore, the evaluation will be redone, and final results may differ from those described here.
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output .00000 volume .00001 suit 01225 gasoline 01458
bill .04526 missile .05726 movie .07933 system .08979
technology .09182  package .09475 film .09783 advertising .11291
material .11427 shoe .11488 oil .12449 product .12479
chip .12479 plant .12868 device .13161 merchandise .13183
good .13240 car .13363  machine .13475  operation .13514
barrel .13680  building .13923 loan .14066  document .14141
gold .11160 copy .11185 debt .14402 truck .14454
debenture .14468 bond .14542 brand .14633 share .14641
gas 14673 food .14708  coverage .14758  certificate .14839
inventory .14886 stake 14924 asset .14957 acre .15149
phone .15157  property .15334 note .15414 version 15509
warrant .15515 ticket .15528 block .15751 card .15806
pound .16148  business .16485 home .16962 contract .17100
computer .17181 steel .17360 show .174419 amount .17630
dollar .18039  program .18111  aircraft .18204  insurance .18227
engine .18332 book .18543 site .19478 line 19487
land .19565 drug .19588  security .19686 weapon 19701
test .19931 tape .20481 item .21203 house .21365
rest .21706 plane .21825  station .21854 piece .22123
paper .22272 mark .22307 import .22753 arm .23139
model .23206 magazine .23170 call .24358 billion .21188
service .25188 issue .25688 work 25714 policy .26237
energy .26286 supply .26545  position .20452 vehicle .29797
thrift .30081  collection .30386 list .33147 ad .33109
million .33923 game .31198 one .34246  shipment .38118
art .38336 article .39738 newspaper .39756 type .41898

set .13282 transaction .15616
hospital 55241 kind .68506 player 69998 export 71760
switch .74617 agent 75588 animal .84308  premium .84474

23

Table 1.10: Disambiguation scores for NP /postmodifier combinations. Items above the line

are correctly classified.

trade .00001 effort 08683 plan  .11405 shop .14468
estate .16620 division 17522 store 17609 unit 23510
subsidiary .26404 account 27786 network 32662 fund 32709
company .36211 trust .39613 partnership .10965 concern  .43930
airline .44054 _institution .16481
giant 50438 team 54480 parent 59502 organization 63279
operator 63752 utility 63796 insurer .64974 bank 66487
industry .66728 couple 67811 manager .68160 maker .70603
country 71725 firm 72003 : 72645 der .74399
foreigner .75349 room .75649 lender .75983 group .77943
corporation .78073  husband .80379 publisher .80626  developer .81175
nation 83127 stockholder 83832 state .87692 family 88925
school  .89850 broker .90178  individual .90353  executive .90404
producer 90640 agency 91013 partner 93265  customer .94037
wife .94645  chairman .94838 holder .95723 board .95960
man .96147 department .96479 father .96875 dealer 97063
people .97064  member 97166 investor 97463 brother .97580
employee .97603  plaintiff .97753 world 97878 government .98305
defendant  .98917 farmer .99021 friend .99417 lawyer .99551
trader .99737 official .99850 client .09883 owner 1.00000
administration 1.00000 analyst 1.00000 buyer 1.00000 director 1.00000
foundation 1.00000 officer 1.00000  participant 1.00000  president 1.00000

seller 1.00000

Table 1.11: Disambiguation scores for agent/verb combinations. Items below the line are cor-

rectly classified.
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Proposition. Suppose L,D, and R are probability matrices as described above, that is:
V[ Lig = 1] V7[5, Ryg = 1] 3, Dy =1

Then -, ; [LDRT]M = 1. In the verification below, M;. and M.; denote the ith row and

jth column of a matrix M, respectively.

[DR"],; = D,.-[R"];

- D.-R;

= D:;R;, (since D is diagonal)
[LDRY],; = Li-[DR"];

= X, Li;[DR"];;

= >.Li;D: R, (previous equality)

i [LDRT]M = > 2rLisDrsRis (previous equality)
= X, Drr (Zz Lix (Z] Rj,r))
= Zq— Dy (Zz Li,‘r)

= Y. D;; (first assumption)

s

(second assumption)

|
-

(third assumption)

So, we are justified in describing the matrix product as a probability distribution on V' x N.
This representation is reminiscent of singular value decompositon of matrices (SVD).: in fact
such a decompositon takes exactly the form (1.1). However, the constraints on L and R
are different: in SVD, they are orthonormal, meaning that any two distinct rows a null dot
product, and the dot product on any row with itself is 1. These conditions are different from
those imposed by the interpretation as probability matrices. One symptom of this is that a

SVD approximation of a frequency matrix may contain negative entries.

A further difference has to do with the relation beween the product matrix and the original
data. In SVD, the product provides the best least squares fit to the frequency matrix, of a
given rank. What is being optimized in the probability model is most easily understood as the

probability of the observed sequence of verb-noun pairs. This can be written:
11 Pl
v,n

In entropy terms, we seck to minimize

Z fu,n (_ log, pv,n)

v,n

This is quite different from the least-squares criterion.
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Abstract

In current theory, a key portion of the lexicon is a specification of subcategorization
frames or wvalences for open-class words. A computational lexicon of useful size re-
quires a vocabulary of several thousand words, cach of which may have dozens or
hundreds of frames, depending on the desired granularity. Moreover, the usage of
such frames is subject to constant innovation, so that the task of constructing the
lexicon for a living language is never done.

This paper addresses the problem of acquiring valences by means of a learning
technique based on head-lexicalized probabilistic context free grammars and the
expectation-maximization (EM) algorithm. Given a hand-written grammar and a
text corpus, a rather loose vaiation of the EM algorithm is employed to estimate the
distribution of frames given head words. We show that the lexicon acquired by this
technique is comparable or better than other automatically acquired lexica, and in

some ways superior to a published, manually-acquired reference.

* This paper is a longer (and carlier) version of Carroll and Rooth (1998). Valence induction
with a head-lexicalized PCFG. In Proceedings of EMNLP-3, Granada. It differs primarily in

the inclusion of an explanation of smoothing.
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2.1 Introduction

In contemporary linguistic and computational linguistic theories, the lexicon for a natural
language includes a specification of subcategorization frames or valences for open-class words
such as verbs and nouns. For instance, the lexicon for English specifies that the verb order

may (among other possibilities) combine to form a verb phrase with:

1. a noun phrase (order - a major pullback, order - a pot of tea)

2. a noun phrase followed by a to-infinitive, with either an object control or raising-to-
object interpretation (order - the FDA - to speed drug approval, order - the Bay of Pigs

invasion - to go forward)

3. a noun phrase followed by a passive verb phrase (order - the meeting - delayed, order -

the documents - suppressed).

Depending on theoretical framework, such frames are specified more or less directly (as in
categorial grammar) or factored into components which entail realized surface frames indirectly
(e.g.Pollard and Sag (1987), Stowell (1981)).

Whatever the details of representation, the need to describe subcategorization frames for
whole languages constitutes a challenge of scale. Written languages have vocabularies of tens of
thousands of words, and there are tens of possible frames, or many more if lexically determined
particles and prepositions are counted as part of a frame. Furthermore, lexical properties such
as subcategorization are subject to constant innovation, so that the task of constructing the
lexicon for a living language is never done. Finally, there are quite a lot of languages for which

comprehensive computational linguistic lexica are scientifically and practically important.

This paper addresses this problem by means of a learning technique based on probabilistic
lexicalized context free grammars and the expectation-maximization (EM) algorithm. Given
a hand-written grammar and a text corpus, expected frequencies of a head word accompanied
by a frame are calculated, and such frequencies are used to compute probability parameters
characterizing subcategorization. Since the calculation of expectations uses a probabilistic
weighting of alternative analyses, the procedure can be iterated, resulting in improved models
of subcategorization.

A further problem addressed here concerns lexically driven conditioning of lexical choice;
we define a model in which each word is probabilistically conditioned on another word and
a syntactic environment. For instance, in order a major pullback, the choice of the object
head pullback is conditioned on the verb order, and the adjective major and determiner a are

conditioned on the nominal head pullback.

Section 2 describes the grammar formalism and a specific grammar of English. In section 3

is concerned with the probability model; we define certain probability parameters and explain
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NC
DETPL1 NPL1
\
DETPL
| VPASS1 NPL1
some
NPL
ADV1 VPASS1 |
| | suggestions
ADV VPASS

frequently  discussed

Figure 2.1: A noun chunk

NC
DETPL1 NPL1

PDET1 DETPL1 ADJ1 NPL1

PDET DETPL  ADJ
| | NpLl  NPLL
all the tedious | |
NPL  NPL

paper work

Figure 2.2: Another noun chunk

how they induce a probabilistic weighting of trees. Section 4 explains parameter estimation via
the EM algorithm, a procedure which allows probability parameters to be determined given
the grammar and a text corpus. Section 5 describes an experiment in extracting a probabilistic
subcategorization lexicon from the British National Corpus (BNC); results are evaluated both

informally and formally in section 6. In the final section we sketch directions for future work.

2.2 A grammar and formalism

The core of the grammar used in our experiment is a conventional X grammar of phrases in-
cluding noun phrases, prepositional phrases, and verbal clusters. Some representative nominal

chunks are given in figures 2.1 and 2.2.

The symbol NC is read “noun chunk”; similarly we work with adjective chunks (ADJIC),
finite verbal chunks (VFC), prepositional chunks (pPc), and so forth. Our use of this concept
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is inspired by Abney (Abney 1991; Abney 1995). The reason for distinguishing chunks from
phrases such as NP, AP, VP and so forth is that complements and trailing adjuncts are not
included in chunks. For instance a verbal chunk generally ends with the head lexical verb, so

that complements following the verb are excluded.

Within Nc, we see a familiar X structure (c.g. Jackendoff (1977)). Modification takes place
by adjunction of a single bar category to a single bar category. In the first tree, [, py, frequently]
is a modifier of [ p,es; discussed], [y pacs; frequently discussed] is a modifier of [y, suggestion],
and [pppr all] is a modifier of [;py, the]. Embedding of chunk categories in other chunk cate-
gories is not excluded — for instance an NC can embed another NC as a genitive.

Verbal categories are also based on an X scheme. Some examples are given in figures 2.3

and 2.4. Verbal category labels are based on a feature decomposition in four dimensions:

1. Bar level.

2. Inflectional form. F, TO, N, and G correspond fairly closely to the VFORM feature of
Gazdar et al. (1985). F indicates a finite form, N a past participle, and G a present

participle. TO indicates the verb or infinitive marker to.

3. Auxiliary verbs have distinguished categories: M indicates modal, H indicates have, and
B indicates be.

4. Main verbs are classified as passive versus non-passive.

Thus for instance VFC is a finite non-passive verbal chunk, and VFPC is a finite passive verbal
chunk; VF2 is the two-bar projection of a finite non-passive main verb, and VHF2 is the two-bar
projection of the auxiliary verb have; VGC is a present participle chunk, and VNC is a past

participle chunk.

As described above, the categories are often interpretable in terms of a feature decomposi-
tion. However, they are treated as atomic in the formalism. Thus NSG1 and NPL1 are distinct
atomic symbols. We depart from a standard context-free formalism in that heads are marked
on the right hand sides of rules, using a prime ('). Here are some of the rules used in licensing

the noun chunks in the figures.

NsGl — vpassl Nsal’

NSG2 — NsG’

DETSG1 — PDET1 DETSG1’

As cxplained later, the head marking is used in the lexicalization of the probabilistic

grammar.
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VFC
MD2 VBASE3

ADV1 MD1l  VHBASE2 VN3

| \ \ |

ADV MD  VHBASE] VN2

| \ \

really  should VHBASE
| apbvl VN1
have | ‘
ADV VN

fully recovered

Figure 2.3: A finite verb chunk

VTOC VFPC

TO2 VBASE3 VBF2 VPASS2

TO1l VBASE2 VFBFl  VPASS1

TO VBASElL VBF VPASS

to VBASE was ridiculed

scrutinise

Figure 2.4: More verb chunks
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Complementation rules

The grammar includes complementation rules for verbs, nouns, and adjectives, and preposi-
tions. Complements are attached at a level above the chunk; for instance, the category VFP
is expanded as a finite verb chunk VFC and a sequence of complements. The following are

examples of rules expanding VFP.

VFP — VFC' is rustling

VFP — VFC' NP rubbed - his spine

VFP — VFC' AP has remained - very sick

VFP — VFC' PP was musing - on the problem
VFP — VFC' VTOP may have decided - to depart
VFP — VFC' NP PP put - the book - on the desk
VFP — VFC' PARTP  runs - away

VFP — VFC' NP VTOP convince - her - to stay

VFP — VFC' PP PP talked - to her - about it

We call categories such as NP, P, VFP and VTOP phrasal categories; such categories end
in the letter . Thus the phrasal category VFP expands as a finite verb chunk VFP plus its

complements.

Examples of phrases covered by the rules are given in the last column. For instance, the

third rule expands VFP as VFC AP; has become is a VFP and wery sick is an AP.

There are similar complementation rules for other verbal categories, and for noun phrases,
adjective phases and prepositional phrases. Figure 2.5 gives a tree involving one verbal com-

plement, one nominal one, and one prepositional one.®

In addition to phrasal categories which consist of a corresponding head chunk category
and its complements, there are phrasal categories which are not headed by chunk categories.
These are phrases with no complements such as adverb phrases; a special case of these are

those phrases which always consist of a single word, such as punctuation.

The state grammar

The third and least standard part of the grammar is a large set of state or n-gram rules
which put together a parse without constructing a standard clause-level analysis. Phrasal
categories are strung together with context-free rules modeling a finite state machine, with
states expressed as categories consisting of an ordered pair of phrasal categories. This results

in right-branching structures, as illustrated figure 2.6. Note that the entire tree in figure 2.5

S8Here there is a disjuncture between the grammar being described in this section and the one used for the
experiment in section 5. In that grammar, noun complements were attached at the N1 level, so that NC had the
status of the phrasal category NP described here. This lack of uniformity in the treatment of complementation
was eliminated in the next generation of the grammar.
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VFP

/\

VFC VTOP

has decided vTOC NP

T

to emphasize NC PP

the festive spirit PC NP
\
A NC
of i i

the times

Figure 2.5: Complementation

could be substituted for the finite verb phrase VFP in figure 2.6.

The backbone of the tree is the chain of categories NP:VFP VFP:COMC COMC:ADVC
ADVC:PERC. These categories represent the conditioning of one phrasal category on the pre-
vious two such categories. Given the state NP:VFP a succeeding category COMP is chosen, and
the machine enters the state VEP:COMP. All category sequences are possible: for all chunk and

phrase categories X, Y, Z, the grammar includes a rule:

xy — Y vz

Since the possibilities are entirely open, the n-gram rules provide no constraint in the non-
probabilistic form of the grammar. In a probabilistic version, however, such constraints are
imposed, providing a useful and robust (though linguistically unrealistic) model of higher-level

sentence structure.

To complete this section, we define headed context-free grammars in the sense employed

here, together with several notions used in the next section.

Definition. A headed context free grammar is a tuple (N, T, W, L, R, s), where

1. N and T are disjoint sets, interpreted as the non-terminal and terminal categories re-
spectively.

2. W is a set, interpreted as the set of words.

3. L is a relation between T and W, characterizing the possible realizations of a given

terminal category as a word. £ and N are required to be disjoint.

32 AIMS VOL.4 NO.3 1998
START
NP:|VFP
NP VFP:COMP
}Zl’e VFP COMP:ADVP
has sprained his ankle COMP  ADVP:PERP

5 ADVP PERP

apparently

Figure 2.6: Structure above the phrase level

Kyasked)

(VFc, asked) (NP, question)

(NC, question)

(VHF2, has) (VN2, asked)
| as las e /\

(VHF1,has) (VN1, asked)(DETSG1,a) (NSG1, question)

| | \
(vHF, has) (VN,asked) (DETSG,a) A

(ADJ1,reasonable) (NSG1,question)

I
A (sa, question)

(aDV1, perfectly) (ADJ1,reasonable)

(ADV, perfectly) (ADJ, reasonable)

Figure 2.7: Lexicalization of categories by projection of heads of words
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4. R is a finite subset of N x N* x (N UT) x N*, the set of headed productions.

5. s € N, with the interpretation of a start symbol.

We typically use 7 as a variable for mother categories, n for the head daughter category,
and a and S for the category sequences flanking the head on the right hand side, so that
(n, a, m, B) represents a rule. z is used for non-head categories. Note that the sequences « and
B are required to be elements of N* rather than (N UT)*, so that terminal categories are not

permitted to occur as non-heads on the right hand side of productions.

To illustrate the representation of rules, the production
VFP — VFC' NP PP

is encoded as a four-tuple the first clement of which is the left hand side VFP; the second
clement of which is the empty sequence, because there are no categories preceding the head;
the third element of which is the head category VFC; and the fourth element of which is the
sequence NP,PP or (VFP, {}, VFC, (NP,PP)).

A category n in N UT is a possible immediate head of a category 7 in N if there is some
rule of the form (7, @, n, B). The set of lericalized nonterminals N C NxW is the composition
of the transitive closure of the possible-immediate-head relation with £. We have (y,w) e

exactly if the word w can be the lexical head of the nonterminal category y.

2.3 Lexicalization and the probability model

Head marking is used to project lexical items up a chain of heads. In the transitive verb phrase

in figure 2.7, question is projected to the NP level, and asked is projected to the VFP level.

In this tree, the non-terminal nodes are lexicalized non-terminals, while the terminal nodes

are members of L.

The point of projecting head words is to make information which probabilistically condi-
tions rules and lexical choices available at the relevant level. At the top level in this example,

the head asked is used to condition the choice of the phrase structure rule
VFP — VFC' NP

as well as the choice of question, the head of the object. We now define events which charac-

terize such choices of rules and of lexical heads.

Definition. Given a grammar G = (N,T,W, L, R, s) with lexicalized non-terminals N, the
set of rule events ER(G) is the set of tuples (W, 7, a,n, B) such that (7, w) is an clement of N/
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and (i, @, n, B) is an element of R. The set of lexical choice events EL(G) is the set of tuples

(w,n, z,w) such that:

1. (n,w) is an clement of N;

2. in some rule of the form (@i, @, n,B), z is an eclement of one or both of the category

sequences « and S;

3. {z,w) is an clement of N.

By virtue of the length of tuples, ER(G) and EL(G) are disjoint, and the union E(G)
can be formed without confusing lexical with rule events. We now define probabilistic head-

lexicalized grammars.

Definition. Let G be a headed context free grammar. A head-lexicalized probabilistic context
free grammar with signature G is a function p with domain E(G) and range [0, 1] satisfying

the conditions below.

1. Fixing any lexicalized non-terminal {7, w),

Z Pa,n,am,p =

a,n,f

2. Fixing any lexicalized non-terminal {fi, @) and possible non-head daughter z,

§ Pa,fzw = 1
zw

Here we are writing the value of the function p on a rule event as pya,a,n,8, and on a lexical

cvent as Py, fiz,w-

The definition characterizes p as a representation of a family of probability measures;
representation by a function defined on the union of the sample spaces for the measures is
possible because the sample spaces were constructed to be disjoint. The function p gives
probabilities for clementary events; probabilities for non-elementary events are defined by

summation.

To assign probability weights to trees, we define a tree-licensing and labeling interpretation
of the grammar. We describe a tree as a set X of nodes and a set U of tuples {m,dy, ...,dy)
with elements from X, satisfying conditions capturing tree geometry; m is interpreted as a

mother node, andy, ..., dy, as the ordered sequence of daughters of m.

Let G =(N,T,W,L,R,s) be a headed CFG, let {X,U) be a tree, and let v be a function
with domain X and range MU L. We write v;(z) for the first (category) component of v(z),

and v9(z) for the second (word) component; note that both terminal and non-terminal nodes
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have word and category components. Let r be a function defined on the non-terminal nodes of
X, with range ER(G); let I be a function defined on the non-terminal nodes of X, with range
EL(G)*. r labels non-terminals with rule events, and ! labels non-terminals with sequences
of lexical events interpretable as the lexical-choice events for the non-head daughters of the

non-terminal. Licensing of a tree by a grammar is defined as follows.

Definition. The labeled tree (X, U,v,r,1) is licensed by G if and only if:

1. For cach terminal node z in X the label v(z) is an element of L.
2. For each non-terminal node z in X the label v(z) is an element of AV

3. For any non-terminal node m, with daughters di,...,dx, r(m) is a rule event
(w,n, @, n, B), where letting a be the length of @ and b be the length of §:

(a) k=a+1+4b
(b) v(m) = (n,w)

c = (1...Cq—1, Where this notation designates the empty sequence when a =0

)

)

()

(d) for each i, 1 <i<awvi(di) =cy.

(e) ¥(dat1) = (n,w)

(f) B = cgt2---Catb, wWhere this notation designates the empty sequence when b =0
)

(g) for cach 4, a4+ 1 <14 < b, nui(d;) = ;.

If in addition the category label of the root of the tree is the initial symbol, then we say that
the tree is licensed as a sentence by G. Where 7 = (X, U, v,1,l) is a labeled tree licensed by
G, we define e(7) to be a function counting occurrences of events as labels in 7. The function

has the following type:
e(r): B(G) » IN

Algebraically, we think of e(7) as a monomial in the variables E(G); the exponent of a given
variable (or event) z is the number of occurrences of z in 7. We denote the evaluation of a
polynomial or monomial ¢ in the variables E(G) by subscripting: ¢, is the value of ¢ at the
vector of reals p. For a monomial ¢ represented as a function from E(G) to IN, evaluation is

defined as follows.
b= TJ 29
2ek(G)

Relative to a parameter setting p, [e(7)], is interpreted as the probabilistic weight of the

labeled tree 7.9

9 As with ordinary PCFGs, caution is required regarding the sample space for the probability measure which
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We have so far omitted the details regarding lexicalization of the start symbol. For the
lexicalized grammar we use a lexicalized start symbol, (s, START-WORD), where START-WORD
is a dummy word not used elsewhere, and it behaves in a slightly non-obvious way. If 7 is
licensed by G and in addition the v maps the root of 7 to (s,w), we say that 7 is licensed as
a sentence by G. N.B. w is not the dummy START-WORD. To account for the probability, we

include another term in our monomial e(7), namely the factor ps START-WORD ,s,u-

By the following construction, our lexicalized grammars can be mapped to ordinary PCFGs
which license homomorphic trees, preserving the parameterization and the induced probability
weighting. Let (N, T, W, L, R, s) be a a head-lexicalized CFG. For each rule r € R we produce
a set of PCFG rules, one for each possible lexicalization of r. The mother categories (left-hand
sides) for the new rules are {7, @), where 7 is the mother of r and {f,w) € N. On the right-
hand side, we lexicalize the head differently depending on whether original head category was
a terminal or non-terminal. Terminals are replaced by the word @, whereas non-terminals are
replaced with the tuple {n,w). For each non-head category y in @ or 8 in the original rule,
we substitute (y,@,7). In other words, we encode the lexicalized head into each daughter
category. For each new daughter category, we create additional CFG rules (y, w,n) — (y, w)
for all (y,w) € N. This procedure reconstructs our lexical choice events as rule events in the
PCFG.

2.4 Parameter estimation

We work with a fixed grammar G; the inductive problem is posed as one of estimating a
head-lexicalized PCFG with signature G. We use the standard method for estimating PCFGs
based on the EM algorithm, with expectations computed by the inside-outside algorithm in
a parse forest representation of possible analyses. Since the approach is familiar, we confine
ourselves to reviewing the mathematical definition of the expectation step. The core notion is
the event count monomial ¢(o, p) for a sentence or corpus o; this is a function mapping events

to non-negative real numbers:
c(o,p) : E(G) - R"

Before defining the count monomial for a sentence, we define event polynomials for sentences
and corpora. The yield y(7) of a labeled tree 7 is defined recursively: the yield of a terminal
node z is va(z), or the word w. The yield of a non-terminal node is the concatenation of the

is defined for finite trees by this construction, and the domain of the probability measure. Depending on p,
the construction may or may not define a probability measure on the set of finite trees licensed by G. For the
general case, infinite trees can be included in the sample space: infinite labeled trees are labeled trees with an
infinite node set X. This requires an extension in the definition of the measure (not all subsets of the sample
space are measurable) but does not affect the probabilities of finite trees. Booth and Thompson (1973) analyzes
the conditions under which a probability measure over finite trees is defined.
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yields of the ordered daughters of the node. A sentence is a finite sequence of words, i.e. an
element of W*. We have already defined the event monomial e(7) of a tree licensed by a
head-lexicalized PCFG p. The event polynomial for a sentence o is the polynomial sum of the
event monomials e(7) of all trees 7 licensed by G and having yield 0.'% A corpus is a finite
sequence of sentences, that is an clement of (W1)*. The event polynomial e(C) of a corpus
C is the polynomial product of the event polynomials for its component sentences. Fixing a
grammar G and a corpus C, the optimization problem we seck to solve is to find a parameter
vector p with signature G such that the probabilistic weight [e(C)], of the corpus is as high as
possible.

The algorithm of Baum and Sell (1968) for constrained maximization of polynomials in-
volves computing an event count monomial determined by a given polynomial ¢ and parameter
setting p; in our application, ¢ is the corpus event polynomial e. Our algorithm works sentence
by sentence, and we will define ¢(o, p) for a sentence o directly in terms of the event monomials
for trees 7 with yield o. The sum in the first equation below is a pointwise sum of vectors

indexed by E(G); juxtaposition of the fraction with e(r) represents a scalar product.

(13) €(0,P) = Lriyirrmo [eif2e(7)
(14) [e(o)]p = s yry=ole(™)lp

The second equation can be used (though in this form not efficiently) to calculate the proba-
bilistic weight of a sentence oj it is a consequence of the fact that evaluation of polynomials

is a homomorphism from the ring of polynomials to the reals (e.g.Lang (1993)).

Where z is an event, ¢(o,p)(z) has the probabilistic interpretation of the expected number
of occurrences of the the event z in a tree with yield o. The sample space consists of labeled
trees, with probability measure parameterized by p, as defined above for finite trees; the
random variable for which a conditional expectation is computed maps a tree 7 to e(7)(z).

The conditioning event for the conditional expectation is that y(7) = o.

Algorithmically, we compute the event count for a sentence o with the inside-outside
algorithm in a parse forest representation of the set of tree analyses of 0. A parse forest is an
and-or graph representation of a set of tree analyses (Lang 1989), in which event counts can

be computed efficiently using the inside-outside algorithm (Baker 1979).

Given a parameter setting p, event counts are computed and summed over the sentences
in the corpus. Using a suitable definition of the event-count monomial determined by a poly-
nomial, this procedure can be shown to compute the event-count monomial for the corpus.

In the algorithm of Baum and Sell (1968) new parameter values would be defined as relative

10Since we defined trees in terms of node carrier sets X, here “all trees” is to be understood as all trees, up

to isomorphism.
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frequencies of event counts, equivalent to maximum-likelihood estimation. We use instead a
smoothing scheme in order to deal with the size of the parameter space and the resulting
problems that (i) counts are zero for the majority of events, and (ii) the parameter space is
too large to be represented directly in computer memory. The procedure can be conceptualized
as a reparameterization of the model where additional smoothing parameters are defined in

terms of event counts.

Smoothing of rule distributions

Lexicalized rules are smoothed against a non-lexicalized grammar in a backing-off scheme
(Katz 1980). Recall that a lexicalized rule event has the form (w,n, a,n,3) where (n,w) is
the lexicalized mother category. We define the event count for a lexicalized mother category

by summation over right hand sides:

c((n,@)) = Y e(w, 7, a,n,8)
a,n,p
The summation ranges over right hand sides «,n, 8 such that (n,a,n,3) is a rule. The un-
smoothed probability for the rule event ({7, w),@,n,B) is defined as a relative frequency of

counts:

Pomend = o((w))
Unlexicalized rule counts ¢ are defined by summing over the word dimension in the lexicalized
count:

c((n,a,n,B)) = ZC«E): Ny a,m, )

w

From this we define an unlexicalized rule distribution pc q n g, as a relative frequency of counts:

b _dlfmon)

n,a,n,0 E(ﬁ)
¢(n) is defined in a way analogous to &({7,w)). To smooth the lexicalized and unlexicalized
distributions together, we use a weighting parameter dependent on the corpus frequency f(w)

of a word w.

ﬁm,ﬁ:%":ﬁz A(C(w))pm,ﬁ,a,n,ﬁ
+(1 = Ae(@)))pa,an,s
where 0 < A(f(w)) < 1. The dependency of the smoothing parameter on word frequency

allows the lexicalized distribution p' to be assigned greater weight for frequent words, and less
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weight for infrequent words. The actual values arc chosen by treating the two distributions
as components of a small set of trivial hidden Markov Models (HMMs), indexed by word
frequency. By training the HMMs with the forward-backward algorithm, we tunc the As to
optimal values in terms of cross entropy. The actual As and frequency ranges are given below.

freq cut-off{[0.1| 4.0 | 8.0 [16.0| co
A(S) 0.0{0.05/0.55(0.85(0.95

Smoothing of word distributions

For the lexical choice distributions, we use an absolute discounting scheme from Ney ct al.
(1994). Recall that lexical choice events are of the form (w, 7, n,w), where 7 is interpreted as
the mother category, @ is interpreted as the mother word, n is interpreted as the (non-head)
daughter category, and w is interpreted as the chosen daughter word. The choice distributions
Puw'anw realize a set of conditional probability distributions, more conventionally written
p(w|w, ,n). For cach conditioning triple (w,7,n), we compute a discount Dy 7, which is

used to decrement the counts for events of the form (@, @1, n, w).

The discounted count is defined by:
é((w, n, n, w)) = maz(0, c({w, R, n,w)) — Dy sin)
where the maximization sets counts which are below the discount factor to 0.
The smoothed distribution is then defined by:

_ é(zi;,ﬁ,n) (w)

T S Conm @) B amp(t}iy)

where k(g 51,n) is the normalization constant

k(m,ﬁ,n) =

and p(w|fi,n) is a smoother distribution over w, about which we will have more to say later.

The discount factor is chosen according to the leave-onc-out principle.!! The idea is to
simulate test circumstances by withholding part of the training data and scoring the model
estimated from this incomplete training data on the held-out data. Let O be a sct of obser-
vations, s a smoothing parameter, po s the probability distribution estimated from O and s.

The scoring function for a smoothed distribution is the log-likelihood it assigns to the held-out

" Leave-one-out is related to the held out method (Duda and Hart 1973) and n-way cross-validation (Wahba
and Wold 1975).
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data. To make efficient use of the training data, we restrict the held-out data to a single obser-
vation, which is allowed to vary across the data set. Thus, the desired smoothing parameter

value is:

max Z log p(0—0,s) (0)
oc0
There is, in general, no closed form for the optimal s. However, Ney gives an approximation
and a procedure for iteratively refining the approximation under conditions met by our lexical

choice distributions.

The standard formula for D is in terms of N(4), defined as

N(i) = Xujeqwy=il 1>0

which is the number of event types which occur exactly 7 times. This assumes events are
completely observable, so that the event counts are restricted to the natural numbers. Our
events are only partially observable, and so may take on any non-negative real value. We define

R(i) to be the natural extension of N (i) to real-valued observations:

R() = > 1

w(i—0.5<=c(w)<i+0.5

The approximate discount factor ﬁ(m,ﬁ,m is then defined as:

R(1
e RO, RE2) >0,
Doy = S iR() > 10
D'(~0.8) otherwise

We use a default discount value, D', to handle the cases where there is not enough data to
estimate a smoothing parameter. This represents a compromise between estimating a discount
by pooling all counts, which leads to cruder smoothing, and estimating a separate smoothing
parameter for each distribution, which degenerates when there is not enough data in to esti-
mate the smoothing parameter. D is estimated by pooling all tuples not directly estimated
above, and applying the adapted discount formula to the pooled data. Let F' be the set of all
cvents failing all the 'if” condition above, i.c., either R(1) = 0 or R(2) =0 or Y, iR(i) > 10.
Let Rp(é) be the number of event types in F' which occur between ¢ — 0.5 and 4 + 0.5 times.
Then D’ is:

Rp(1)

D= fe) + 2R,

As Ney'’s results suggest that the approximation is very good in terms of its effects on

overall entropy, we do not iteratively refine the discount factors.
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We now return to the back-off distribution p(w|7,n). As appropriate for a back-off dis-
tribution, p(w|n,n) has fewer parameters, allowing for more accurate parameter estimation
and fewer sparse data problems. However, our model faces the problem of rare and even novel
words, to which it must still assign non-zero probabilities. We therefore take the standard step

of cascading the back-off distribution(s):

p(w|,n) = m + kg nyp(w|n)

- ey (w) (w0
plwln) = > C(d>(w) + k(d>p( )

. é(w)
=AW Ly
Bw) S o) +kp(c € w)
where p(c € w) is a poisson distribution over character strings. &pny(w) = Y5 Cw,nm) (W) —
D 5,ny- That is, we compute the discount from the pooled counts. The discount factors and

normalization constants are computed, mutatis mutandis, as before.

Smoothing across grammatical categories

The trigram state model introduces a large number of categories, with the unfortunate effect
that at this level the lexical dependencies are overparameterized. Consider the hypothetical

observation
(wrote, NP:VFP, VFC1:NP, book)

indicating that book was seen as a (direct) object of wrote, and wrote was preceded by a noun
chunk. If some other category occurs before the verb, say THAT, this would be counted as a
distinct observation, and the two would fall into separate distributions. To add further injury,
the compound categories reduce the effectiveness of smoothing and divorce the collocates iden-
tified with the trigram model from those found with conventional complementation rules. The
penultimate smoothed distribution for the observation above is p(book|vFpP1:NP), rather than
the much more intuitive p(book|Np). The implication is that, until we reach the unconditioned

string model, there is no sharing of data between the trigam and conventional rules.

To alleviate this problem, we map the trigram states onto their most recent (right-hand)

categories. This transforms our hypothetical example above into
(wrote, VFP1, NP, book)

This is identical to the observation that would be recorded with the rule vep — vFC' NP; the

data can be pooled at every granularity.
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prob freq word prob freq word
0.043 352.9 need 0.016 129.6 chance
0.039 318.8 attempt 0.013 102.6 tendency
0.038 314.6 ability 0.011 93.6 decision
0.033 266.7 time * 0.010 83.3 something *
0.027 222.7 way * 0.0098 80.6 capacity
0.024 195.7 opportunity|0.0097 79.4 desire
0.023 187.8 right 0.0088 72.5 cffort
0.020 167.0 nothing * |0.0087 71.5 thing *
0.020 163.3 power 0.0086 70.2 pcople
0.018 143.9 failure 0.0083 68.1 evidence

Table 2.1: Nouns selecting an infinitival complement/adjunct

2.5 An experiment

We estimated a head-lexicalized PCFG from parts of the British National Corpus, using
the grammar described in section 1 and the estimation method of the previous section. A
bootstrapping method was used, in which first a non-lexicalized probabilistic model was used
to collect lexicalized event counts. On the next iteration, counts were summed based on a
lexicalized weighting of parses, as described in the previous section.

We restricted the analyses considered to those consistent with the part of speech tags
specified in the BNC, which are output of the CLAWS tagger. In some cases the BNC specifies a
disjunction of tags, and the mapping from BNC tags to our own terminal categories introduced
further ambiguity. For instance, unlike the BNC, we use distinct parts of speech for passive
participles and perfect participles. We also collapse some distinctions made in the BNC; for
instance, we use a single part of speech tag for finite verb forms, collapsing present and past

tenses.

In each lexicalized iteration, event counts were collected over a contiguous five million
word segment of the corpus. Parameters were re-computed according to the formulas described

above, and the procedure was iterated on the next contiguous five-million word segment.

We report estimated frequencies obtained after eight lexicalized iterations. A useful infor-
mal way of examining the induced valence lexicon is to rank heads which select a given frame

by frequency of their using the frame. In table 2.5, we look at nouns selecting a to-infinitive.

The frequency column lists the expected frequency in a fixed 5-million word corpus segment
of the given nominal head (e.g. ability in the context of a vTOP complement. The expected
frequency is computed using the method described above. The first column is derived from

the second; it gives unsmoothed probabilities for the head nominal word given the local phrase
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structure configuration.

There is a proviso about the lexical relations being identified. While the unstarred nouns
select what under most analyses would be considered a complement, the selected element in
the case of time, way, nothing, something, place and thing is an infinitival relative clause. This
is reflected in paraphrasability with a modalized finite relative clause, or an infinitival relative
clause with an overt wh phrase:'2
(15)a. The main thing to realise with trailer driving is that it only takes one mistake to

wreck the trailer.

b. The main thing which one should realize with trailer driving is ...

c. the best way to find out what is available

d. the best way in which to find out what is available

Our syntactic categories do not distinguish infinitival phrases (category VTOP) containing free
traces from ones not containing free traces. In this sense, the syntactic model is not capable
of distinguishing infinitival relative clauses from other infinitival phrases. Independently, our
model does not have the means of distinguishing complements from lexically conditioned or
otherwise frequent adjuncts.'® If a certain adjunct category occurs frequently with a given
head, an association will be learned just as with a complement. Thus—assuming that of
the complement/adjunct distinction is valid, something which we do not take for granted—
the model described here learns lexically conditioned complements and adjuncts, rather than
complements alone. We do not regard this as a defect, for two reasons. First, for some purposes,
the distinction between complements and adjuncts is of no significance. For other purposes
(for instance in the theory of lexical semantic structure, and in certain areas of syntax) the
distinction may be significant, but having a good account of conditioned adjuncts is just as
important as having a good account of complements. In this sense, our procedure is learning
only part of a lexical representation; it does not learn whatever features characterize the
complement /adjunct distinction. Many other features of lexical representations have the same

status; for instance the procedure in present form does not learn control features.

Table 2.2 lists verbs occurring with high estimated frequency with an NP plus to-infinitive

'2(15a) and (15c) are quoted from the BNC.

3By lexically conditioned, we mean that the adjunct can combine with a fairly confined class of modified
phrases, and that the integration of the semantics of the adjunct is closely tied to lexically-conditioned factors
in the semantics of the modified phrase. This is true for instance of path prepositional phrases in theories
where such phrases are considered adjuncts, e.g. with motion or perception verbs (John walked across the field,
John looked across the field). This brings up the point that theoretical work draws the line between arguments
and adjuncts in a position different from what is dictated by naive considerations. For instance, in the theory
of Grimshaw (1990), only a class of nouns having lexical representations involving complex event structure
take arguments; an example is ezpression in the sentence the frequent ezpression of one’s feelings is desirable.

Other nouns, including for instance the relational noun member in a ber of the c itlee, take adjuncts

rather than arguments.
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prob |freq |word
0.06456{390.6 |is is the first to acknowledge
0.03602|217.9/have |have a great deal to offer
0.03030|183.3|allow
0.02584|156.3| want
0.02034(123.0|use use a torch to see
0.01603|96.98|cnable
0.01574|95.23 |asked
0.01562|94.52| wanted
0.01419|85.86|take  |take you to meet Brian
0.01332|80.57|ask
0.01211|73.26|led
0.01157{70.03 |expect

Table 2.2: Verbs combining with an NP and an infinitive

complement frame. In this table, to avoid redundancy, we include only the first occurrence
of an inflectional form of a given lemma. For cases where we feel the NP-VTOP frame is not

intuitively obvious, we include an example.

Finally, table 2.3 lists verbs taking the frame NP PARTP, a noun phrase followed by a

particle.

These data are positive, in the sense that the learned frames are correct according to our
criteria. However, this way of looking at results does not bear very directly on the specific
goal of the learning experiment, which has to do with the distribution over subcategorization
frames conditioned by a given head. In section 2.6, we will measure the extent to which such

distributions have been learned.

‘Word-word relations

Lexical events (@, 71, n, w) are used to choose the heads of non-head daughters. The condition-
ing factors are the mother category 7, the mother head 7, and the daughter category n. These
cvents model frequent head-head pairs occurring a modification of complementation relation.
In table 2.4 we list the eight most frequent adjective modifiers of road, the eight most frequent

adverb modifiers of satisfactory, and the eight most common object heads for the verb address.

As described above, such parameters are recorded only for words which have been ob-
served with an estimated frequency above a cutoff. Following each head above, we indicate in

parentheses how many parameters are recorded for a 5 million and a 30 million word model.
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prob freq word
0.0551072 |96.9494 |put
0.0326008 |57.3542|take
0.0245983 |43.2756 |get
0.0211335 |37.1799 let
0.0208253 |36.6378|is
0.0201579 |35.4635 [took
0.017727 |31.1868|brought
0.017212 |30.2808|turned
0.0166642 |29.3172|have
0.0142207 |25.0183 |picked
0.011036 |19.4155|pulled
0.00963676(16.9538 [sct

Table 2.3: Verbs combining with a noun phrase followed by a particle

The lexical selection model in effect threads a word bigram model along the structure of
heads marked in the syntax. Each lexical head (other than the topmost one) is conditioned
on some other lexical head. This allows the model to capture a wide range of collocational
dependencies. Consider the italicized range of words in the following sentence drawn from the
BNC.

(16) PASS & CO. have over thirty years experience in prevention and preservation work in
houses

The following collocates are all relevant to evaluating the correct parse: have ezperience
(verb-object head); over thirty (adverb-cardinal); thirty years (cardinal-noun); years ezpe-
rience (noun noun). All of these are frequent enough to be captured in the model we have
estimated from 30 million words of the BNC.

2.6 Frame evaluation

In this section, we suggest an evaluation a probabilistic complementation frame, and apply it

to the distributions for three specific verbs.

We obtained frame frequency counts for the verbs allows, reached, and prove by hand-
classifying one to two hundred occurrences of each. Some observed frames were not present
in the grammar, for predictable reasons. Frames such as SBAR require high-level constructs

not present in the current grammar. Unusual and unorthodox frames turned up, e.g. PART
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road (63/244) |satisfactory (14/37)| address (24/86)
ADJ prob |ADV prob |NN prob
main 0.29 |entirely 0.17 |question  0.086
roman 0.062 |highly 0.11 |issue 0.086
new 0.055 |most 0.09 |themselves 0.059
high 0.051 |very 0.075 |issues 0.031
old 0.030 |quite 0.055 |structure 0.031
narrow 0.017 |wholly 0.032 |argument 0.014
important 0.011 |uncommonly 0.0037|questions 0.0043
modern  0.0091|especially ~ 0.0037|clectorate 0.0043

Table 2.4: Adjectives selected by road, adverbs selected by satisfactory, and object nouns
selected by the verb address. In parends we give the number of entries deemed worthwhile in

5M and 30M word corpus segments.

pP PP. Third, some ordinary frames were simply overlooked. In the tables below we indicate
absent frames by enclosing the “true”, hand-classified figure in parends, and putting a dash
in the column for the “observed”, model-classified figure. It is a straightforward matter to
deduce how the model should classify frame occurrences for which the correct rule is absent.
For this reason, we report results both for the complete sct of frames, the direct results of
hand-classification, and the feasible set of frames, the reduced set of frames which the model
has to choose from. The column headed “true” indicates counts that differ between the two
frame sets by putting the complete counts inside parends, and the feasible counts outside. The
tables also indicate the intrinsic frame entropy for cach word, given both the complete and

feasible frame sets, again putting the complete figureres in parends.

allows entropy: 1.459 (1.929)
freq
truc| obs|frame
135(116.5|NP VTOP
(17) 40| 35.4|NP
11| 9.2|ppP
7(5)| 13.5|<NIL>
4| 10.0|NP NP
3| 9.4|NP PP
(2) —|SBAR
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reached cntropy: 2.140 (2.428)
freq

true| obs|frame
117(97.3|NP
26(21)|14.7|NP PP
11|14.1|pP
9(8)| 6.3|PART PP
(5)] —|~P PP PP
4| 1.9|NP NP
3(2)| 3.6|PART
2|21.8|<NIL >
2| 1.6|pP PP
)
)

(18)

—|PART PP PP

—|PART VTOP

word: proved entropy: 1.616 (1.748)

true| obs|frame
72(60.6|AP
37|34.9|vToP

SBAR

—
—
ot

~

|

6.9|NP PP
(19) 2.7|NP AP

NP NP

s A ol o
—_
=)

2.3|NP VTOP
S
PP SBAR
4.1|pP
35.0|<NIL >
0|AP PP

—_~ o~
N W
~
| |

— = N

For a fixed verb, we represent such a frequency count by f(a), where « is the frame; we
represent the frame probability distribution estimated in our experiment by p,. The idea
is to measure the agreement between the model’s distributions and the observed frequency
counts. Our measure is based on the information-theoretic notion of cross-entropy. Letting
N =3, f(a), the total number of frame occurrences counted, we define the per-occurrence

cross-entropy as follows:

Z—logpa x %

«
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frame entropy for "allows"

w/ unknown frames

fffff known frames.

Figure 2.8: Per-occurrence frame cross-entropy.

The term — log p, can be conceptualized as the number of bits required to designate frame
« in an ideal code based on the probability distribution p, while % scales this by the observed
relative frequency of a. Disagreement between p and the real distribution of frames has the

effect of raising the cross entropy.

For the cross-entropy formula to be informative, p, must be non-zero whenever f(a) is.
Because some of the actual frames were not included in the present generation of our grammar
this is not the case for our rule distributions, even smoothed against the unlexicalized rules.
We dealt with this instecad by smoothing against a a spelling model, a poisson distribution
over categories which assigns non-zero probability to all frames, observed or not. In the case of
proved, unknown frames involving SBAR are fairly frequent, and the spelling model produces
quite a high penalty.

The cross-entropy measure has three features to recommend it. First, it provides a the-
oretically motivated price measure for various bits of information. The price for missing an
infrequent event is low; more common events cost more, in terms of their entropy penalty.
Second, by measuring the entropy of the distribution, one can separate the difficulty of the
distribution to be learned from what is actually learned. Simply identifying a verb’s frames
precludes measuring whether the task is easy or difficult. Third, it avoids relying on other
sources of information, such as dictionaries, which may be unreliable or incompatible. In par-
ticular, one must cither reach consensus with the outside source on the argument/adjunct

distinction, or somehow map the learned frames to the outside frame scheme.

Figures 2.8 through 2.10 show the sample cross entropy. The horizontal axis indicates
training iteration for the probability models, with 0 being the bootstrap model estimated
from an unlexicalized grammar. In addition, we indicate the cross entropy for the combined
model on the right-hand edge of each graph, using an “0” and a “*” for the complete and
feasible frame sets, respectively. The horizontal lines indicate the entropy of the observed

frame distribution; optimal model behavior should approach this line. The difference between
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per-occurtence entropy
w
8

N
1S

per-occurtence entiopy
N
3

frame entropy for "proved"

w/ unknown frames

known frames

a 5 6
training iteration

Figure 2.9: Per-occurrence frame cross-entropy.

frame entropy for "reached"”

————— W/ unknown frames
known frames.

5 6
training iteration

Figure 2.10: Per-occurrence frame cross-entropy.
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allows proved reached

feasible |complete||feasible|complete|| feasible|complete
entropy 1.459 1.929| 2.397 2.668| 1.660 1.842
revised model c.c. 1.628 —I| 2.438 || 1.787 -
combined model c.c.| 1.664 2.893|| 2.542 3.273|| 2.019 2.467

Figure 2.11: Comparison of optimal performance (entropy), combined model performance, and

performance of the revised model trained on the test sample.

the two reflects the relative entropy, or the number of additional bits needed to guess the

correct frame, when using the model’s distribution.

A visual inspection of the graphs shows that the cross entropy for the complete and feasible
frame sets closely track cach other. The complete set exacts an entropy penalty of various size,
depending on the frequency of the unknown frames, but there is no tendency to converge on

the feasible frames at the expense of the correct ones.

The major trend for all words is that cross entropy drops in the initial iterations of lexi-
calized parsing, up to around the third training iteration. Thereafter the movement is erratic.
Results for the combined model are mediocre, better than the worst performance but worse

than the best performance seen for individual iterations.

The erratic performance of the individual training models and the lacklustre performance
of the combined model suggest that either the model is failing to learn or the 5 million
word segment size is too small for the target distributions, and sample variance is causing
fluctuation in the model distributions. We will argue that neither of these is the case, but
rather are evidence that the heterogeneous content of the BNC produces a non-stationary

distribution.

To confirm that the model learns correctly, we carried out the following mini-experiment.
Using the combined model, we estimated the frame observations over the hand-evaluated test
sample. Using only those observations, we re-estimated the model distributions for the target
words, and re-evaluated the cross entropy on the test sample. In all cases, the re-estimated
model showed a large jump in entropy, measured on the set of feasible frames'® We tabulate

these results in table 2.6, where the re-estimated model is designated as “revised”.

The BNC is a “balanced” corpus, meaning it contains excerpts drawn from a wide variety
of genres, including spoken dialogues, pulp fiction, political pamphlets, and more. The average
sample length is about 25,000 words. A 5 million word sample therefore contains about 200

different sample texts, which seemed enough to overcome the presumed discrepancies between

"Since the complete frames cannot be completely converged on, measuring the relative entropy of the
complete frames and the model is less informative.
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the distributions in the different texts. Instead it appears that the distributions are sharper
than we anticipated, and hence 200 samples is not enough to overcome the variance, or the
organization of the BNC, with related materials grouped contiguously, has defeated our at-
tempt to “homogenize” the distribution. The tantalizing suggestion of the data is that there is
a very good reason why other researchers, also working on lexicon extraction from text, have
reported both finding entries missing from lexicons and lexicon entries that did not appear,
cven in large text samples: the reason is simply that lexicon builders have overestimated the
stability and uniformity of the distributions. The second suggestion is that static lexica are
likely to be of only limited utility. Either one can make very crude lexica, with a sharply
reduced set of frames, likely to appear across a wide variety of texts, or one can include a
great many frames, most of which will not appear in any particular sample text. Automatic
methods of acquiring, tuning, or somehow conditioning the lexical entries seem the order of
the day.

2.7 Optimal parses

Although identifying a unique parse does not play a role in our experiment, it is potentially
useful in a broad variety of applications, including machine translation, bilingual text align-
ment, and speech generation. A simple criterion is to pick a parse with maximal probability;
this is identified in a parse forest by iterating from terminal nodes, multiplying daughter
probabilities and the local node weight at and-nodes, and choosing a daughter with maximal
probability at or-nodes. In table 2.5 we give several examples of maximal probability parses.
Entries in the left column are maximal phrasal categories. Successive phrases at this level are
handled by the state grammar. Below this level, we indicate structure with indentation.'® Note
that two PPs in the first example are handled by the state model, rather than being attached
to the appropriate noun phrases. In the second example, the tensed passive verb phrase is

chopped up by an interjection.

Other optimality criteria can be defined. The structure on noun chunks is often highly
ambiguous, because of bracketing and part of speech ambiguities among modifiers. For many
purposes, the internal structure of an noun chunk is irrelevant; one just wants to identify the
chunk. In what we call a pscudo-Viterbi parse, probabilitics are summed within chunks by the
inside algorithm. Above the chunk level, a highest-probability tree is computed, as described

above.

'5PPs have been adjusted to hang off NP rather than N1, in conformity with the grammar described above,
although these parses were obtained with a grammar which attaches PPs to N1.
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PP at PREP
NC its PRO\$ next ADJ meeting NSG
NP the DETSG group NSG
VFP VFC received VF
NC a DETSG paper NSG
PP PC from PREP
NP joyce PN skinner PN

PP on PREP
NP a DETSG possible ADJ college NSG
PP PC of
NC PREP education NSG model NSG
COMP -- COM
NP one CD
PP  of PREP
NP several DETPL models NPL
COMP , COM

PP including PREP
NP a DETSG university NSG model NSG

PP by PREP
NP professor PN john PN ziman PN
PERP . PER

NP stewart PN mason PN

COMP , COM
NP the DETSG new ADJ chairman NSG
PP of PREP
NP the DETSG ncdad NSG
COMP , COM
VFP was VBF
COMP -- COM
SUBP as SUB
NP we PROSG
VFP have VHF seen VN
COMP -- COM
VPASSP convinced VPASS
PP by PREP

NC the DETSG early ADV 1970s CD
THATP that THAT
NP a DETSG merger NSG
VFP was VBF both ADV inevitable ADJ
and CONJ desirable ADJ
PERP . PER

Table 2.5: Maximal-probability parses

VOL. 4 NO.3 1998
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2.7.1 Notes on the implementation, parsing times, etc

The parser used for the bootstrap phase is a vanilla CFG chart parser, operating bottom-up
with top-down predictive filtering. Chart entries are assigned probabilities using the unlexical-
ized PCFG and the lexicalized frequencies are found by carrying out a modified Inside-Outside

algorithm which simulates lexicalization of the chart.

In the iterative training phase, an unlexicalized context-free skeleton is found with the
same parser. We transform this into its lexicalized form-—categories become (w,n) pairs and
rules acquire lexical heads-and carry out the standard Inside-Outside using the more elaborate
head-lexicalized PCFG model. Average speed of the parser during iterative training, including
parsing, probability calculation, and recording observations, is 10.4 words per second on a
Sun SPARC-20. The memory requirements for a model generated from a 5M word segment are
about 90Mbyte. The upshot of all this is that we can train about 1M words per day on one

machine, and a single 5M word iteration requires one machine work week.

Note that the trigram state model, while linguistically unmotivated, will nonetheless yield
many appropriate collocates in the word-word frequency counts. This has been the none-
too-secret ingredient in the success of n-gram models in speech recognition. Our model is a
variation on these, in that it includes grammatical categories in the conditioning parameters.
This increases the size of our bigram model to approximately the same size, in terms of
parameters, as a more ordinary trigram model. In terms of model entropy, category information
is presumably not as effective as an additional word for conditioning. However, we enjoy an
advantage over traditional n-gram models in that we structure the lexical dependencies with
our syntactic rules. Hence, at the state machine level, dependencies will generally be between
heads, even if they lie more than two words apart. Within phrases, we have even better
information, on average, and we restrict our attention to the probabilistic relation between

heads and their dependents.

2.8 Conclusion

Lexicalization both necessary and sufficient for frame extraction. The lexicalization may,
in fact, be too sensitive to the data, as suggested by the noisy behavior of the per-frame-
occurrence cross-entropy. If so, this suggests an interesting limit to what can be stated prob-

abilistically.
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Automatic Semantic, Classification of Verbs Accordin8
tot er%r Aﬁernatlon %ehavxli)ur*

Sabine Schulte im Walde

Abstract

An automatic semantic classification of verbs was performed by first determining
the verbs’ alternation behaviour and then clustering the verbs on that basis. The
alternation behaviour of the verbs was outlined by inducing syntactic subcategorisa-
tion frames from maximum probability (Viterbi) parses of a robust statistical parser,
completed by assigning WordNet classes to the frames’ arguments. The clustering
was achieved (a) iteratively by measuring the relative entropy between the verbs’
probability distributions over the different types of frames, and (b) by utilising a
latent class analysis based on the joint frequencies of verbs and frame types. Using
Levin’s verb classification (Levin 1993) as evaluation basis, (a) 61% and (b) 54% of

the verbs were classified correctly into semantic classes.

* The work was performed within the scope of my diploma thesis (Schulte im Walde 1998).
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3.1 Motivation

For this work, I assumed that the diathesis alternation of verbs, i.c. the alternation in the
expression of the verbs’ arguments, is a basis for the comparison of the verbs’ meanings. More
specifically, I empirically investigated the proposition that verbs can be semantically classified
according to their syntactic alternation behaviour concerning subcategorisation frames and
their selectional preferences for the arguments within the frames.

The idea of a semantic classification according to alternation behaviour is related to
Levin (Levin 1993) who defined verb classes on the basis of the verbs’ alternation behaviour.
Consider, for example, the semantic class of Vehicle Names containing verbs like balloon,

bicycle, canoe, skate, ski because they agree in the following properties:
e INTRANSITIVE USE, possibly followed by a path:
(20)a. They skated.
b. They skated along the canal/across the lake.

e INDUCED ACTION ALTERNATION (some verbs):

a sub-type of TRANSITIVE ALTERNATION, where the transitive use of the verb can be
paraphrased as causing the action named by the verb; the causee is typically an animate
volitional entity induced to act by the causer; the verb must be accompanied by a
directional phrase

(21)a. He skated Penny around the rink.
b. Penny skated around the rink.

LOCATIVE PREPOSITION DROP ALTERNATION (some verbs):
(22)a. They skated along the canals.

b. They skated the canals.
e RESULTATIVE PHRASE:

an XP which describes the state achieved by the referent of the noun phrase it is predi-
cated of as a result of the action named by the verb

Penny skated her skate blades blunt.

As Levin did, I attempted to derive verb classes from the verbs’ behaviour. The information
I fed into an automatic deduction process for semantic classes was thereby referring back to
Chomsky’s (Chomsky 1965) demands for the utterance of verbs: the verbs’ behaviour was

defined by their subcategorisation rules and their selectional rules.

Such a definition of the verb’s semantic class can be considered as part of its lexical entry,

next to idiosyncratic information: the semantic class generalises as a type definition over a
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range of syntactic and semantic properties, to support Natural Language Processing in various
arcas like lexicography (by the enrichment of lexical knowledge), word sense disambiguation
(by the provision of context information provided by the semantic verb type), or parsing (by
the generalisation from verb tokens to verb types and the resulting restriction of syntactic
structures). Klavans and Kan (Klavans and Kan 1998), for example, discriminate documents

by type and semantic properties of the verbs within the documents.

3.2 Automatic Acquisition of Semantic Verb Classes

I empirically investigated the verbs’ behaviour and their meanings by automatically inferring
semantic verb classes with the help of data-intensive methods working on data from a large
corpus, and by applying statistical methods proved useful for NLP-tasks. The inference process

contained three main steps:

1. The induction of subcategorisation frames for verbs from a large corpus
2. The definition of selectional preferences for the subcategorisation frames

3. The clustering of the verbs into semantic verb classes, on account of the verbs’ behaviour

as defined in steps 1 and 2

Following sections 3.2.1 to 3.2.3 present the methods used for the three steps and their reali-

sation.

3.2.1 Induction of Subcategorisation Frames

Within the first step of inducing purely syntactic subcategorisation frames for verbs I used
the robust statistical head-entity parser as described in Carroll and Rooth (Carroll and Rooth
1998) which utilises an English context-free grammar and a lexicalised probability model to
produce parse forests for sentences, where cach sub-tree is annotated with information about
the lexical head and the probability. I parsed the heterogeneous British National Corpus
(BNC) and extracted the maximum probability (Viterbi) parses from the parse forests, for a
total of 5.5 million sentences.

Based on the maximum probability parses I determined the main verb and all its arguments
as the sentences’ subcategorisation frame tokens. For example, the frame token of the sentence
Nobody excelled him in that judgement would be defined by

act*excelled subj*nobody obj*him pp*in*judgement,

describing the full (active) verb form and the subject, object and prepositional phrase ar-
guments as determined by the English grammar, each accompanied by its lexical head, the

prepositional phrase accompanied by its lexical head and the head noun of the sub-ordinated
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noun phrase. I finished the frame description by lemmatising the head information in the

subcategorisation frames.

To gencralise over the verbs’ usage of subcategorisation frames, I defined as 88 frame
types those frames which appeared at least 2,000 times in total in the BNC sentence parses,
disregarding the lexical head information. For example, the most frequent frame type was the
transitive frame subj:obj. On the basis of the frame types I collected information about the
joint frequencies of the verbs in the BNC and the subcategorisation frames they appeared
with. Appendix 1 gives a full list of the 88 subcategorisation frame types and an example for

the joint frequencies.

3.2.2 Selectional Preferences for Subcategorisation Frames

The next step after inducing the subcategorisation frame types was to refine the information by
identifying a preferential ordering on conceptual classes for the argument slots in the frames.
The basis I could use for the selectional preferences was provided by the lexical heads in the
frame tokens as determined in section 3.2.1, for example the nouns appearing in the object slot
of the transitive frame for the verb drink included coffee, milk, beer, demanding a conceptual

class like beverage for this argument slot.

I followed Resnik (Resnik 1993)/(Resnik 1997) who defined selectional preference as the
amount of information a verb provides about its semantic argument classes. He utilised
the WordNet taxonomy (Beckwith et al. 1991) for a probabilistic model capturing the co-
occurrence behaviour of verbs and conceptual classes, where the conceptual classes were iden-
tified by WordNet synsets, sets of synonymous nouns within a semantic hierarchy. Referring
to the above example, the three nouns coffee, milk, beer arc in three different synsets — since
they are no synonyms —, but are all sub-ordinated to the synset defined by beverage, drink,
potable. The goal in this example would therefore be to determine the relevant synset as the

most sclectionally preferred synset for the object slot of the verb drink.

Redefined for my usage, the selectional preference of a verb v concerning a certain semantic
class ¢ within a subcategorisation frame slot s was determined by the association ass between

verb and semantic class:

a35(Vs, C5) =def p(cs\vs)logpi)c(ij;) (3.2)

with the probabilities estimated by maximum likelihood:

_ f(”s; Cs)
p(cs"”s) = f('Us) (33)

_ f(es) _ f(cs)
p(CS) - Zc’&class f(c"e) f(S) (34)
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To facilitate the understanding of the equations I briefly interpret the relevant parts:

1. f(vs,cs) was defined by how often a certain semantic class appeared in a certain frame
slot of a verb’s frame type.

2. f(vs) was defined by the frequency of a certain verb regarding a specific frame type, i.e.
the joint frequency of verb and frame type as determined in section 3.2.1.

3. f(cs) was defined by how often a certain semantic class appeared in a certain frame slot
of a frame type disregarding the verb.

4. vcciass f(¢s) equals f(s), the frequency of the argument slot within a certain frame
type, since summing over all possible classes within a subcategorisation frame slot was
cqual to the number of times the slot appeared.

5. f(s) was defined by the number of times the frame type appeared (as determined in
section 3.2.1), since the frequency of a frame type equals the frequency of that frame
with a certain slot marked.

The frequencies of a semantic class concerning an argument slot of a frame type (dependent or
independent of a verb) were calculated by an approach slightly different to Resnik’s, originally
proposed by Ribas (Ribas 1994)/(Ribas 1995): for each noun appearing in a certain argument
position its frequency was divided by the number of senses the noun was assigned by the
WordNet hierarchy,'¢ to display the uncertainty about the sense of the noun.!” The fraction
was given each conceptual class in the hierarchy to which the noun belonged and projected
upwards until a top node was reached. The result was a numerical distribution over the
WordNet classes:

fe)= Y Ao (3.5)

|senses(noun)|
nouneccs

To give a further example about the amount of information we were provided with after
this process, the verb swim with the frame type subj:pp.in (indicating a subject and a
prepositional phrase headed by in) had its strongest preferences for the WordNet class fish as
subject and body of water as prepositional phrase object.

For this work, however, I restricted the possible conceptual classes within the frames’ argument
slots to 23 WordNet (mostly top) level nodes, to facilitate generalisation and comparison of
the verbs’ sclectional preference behaviour, and defined abbreviations for them. Appendix 2

gives an overview of those WordNet synsets and its member nouns.

SFor example, when considering the noun coffee isolated from its context, we do not know whether we are
talking about the beverage coffee, the plant coffee or a coffee bean. Therefore, a third of the frequency of the
noun was assigned to each of the three classes.

"Intuitively, Ribas’ approach was an improvement to Resnik’s in this detail, since Resnik split the number
of times a certain noun appeared in an argument position by the total number of classes it appeared in, up
to the top of the hierarchy. This treatment made the uncertainty dependent on the depth of the hierarchy,
though, not from the number of different senses.
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3.2.3 Clustering Verbs into Semantic Verb Classes

On the basis of the information about subcategorisation frame types and their arguments’
conceptual classes I could start to cluster verbs. For that, I selected verbs from Levin’s clas-
sification. The constraints I required for the verbs were (i) some verbs to be polysemous to
investigate the realisation of the phenomenon by the clustering algorithms, and (ii) to dis-
tinguish between high and low frequent verbs to see the influence of the frequency onto the
algorithms. Therefore I selected 153 different verbs with 226 verb senses which belonged to 30

different semantic classes. Four of the verbs were low-frequent verbs.

To cluster the verbs I applied two different algorithms, and each algorithm clustered the
verbs both (A) according to only the syntactic information about the subcategorisation frames
as acquired in section 3.2.1 and (B) according to the information about the subcategorisation

frames including their selectional preferences as completed in section 3.2.2.

e Iterative clustering based on a definition by Hughes (Hughes 1994):

In the beginning, cach verb represented an own cluster. Iteratively, the distances between

the clusters were measured and the closest clusters merged together.

For the representation of the verbs, each verb v was assigned a distribution over the dif-
ferent types of subcategorisation frames ¢, according to the maximum likelihood estimate

of (A) the verb appearing with the frame type:

_ f(v,t)
pli) = L0 35)

with f(v,t) being the joint frequency of verb and frame type, and f(v) being the fre-

quency of the verb, both as determined in section 3.2.1,
and (B) the verb appearing with the frame type and a selectionally preferred class com-

bination C for the argument positions s in ¢:
p(t, Clv) =aes p(t|v) * p(Clv, 1) 3.7
with p(¢|v) defined as in equation (3.6), and

[1sc, ass(vs, cs)
=d
<! Zc’s cclass Hs&t ass(vs, Cg)

which intuitively estimates the probability of a certain class combination by comparing

p(Clo, )

(3.8)

its association value with the sum over all possible class combinations, concerning the
respective verb and frame.

Starting out with each verb representing an own cluster, [ iteratively determined the two

closest clusters by applying the information-theorctic measure relative entropy'® (Kull-

8Concerning the two typical problems one has with this measure, (i) zero frequencies were avoided by
smoothing all frequencies by adding 0.5 to them, and (ii) since the measure is not symmetric, the respective

smaller value was used as distance.
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back and Leibler 1951) to compare the respective distributions. Those were merged into
one cluster, and their distributions were merged by calculating a weighted average. Based
on test runs I defined heuristics about how often the clustering was performed. In addi-
tion, I limited the maximum number of verbs within one cluster to four elements because

otherwise the verbs showed the tendency to cluster together in a few large clusters only.

e Unsupervised latent class analysis as described in Rooth (Rooth et al. 1998), based on

the expectation-mazimization algorithm:

The algorithm identified categorical types among indirectly observed multinomial dis-
tributions by applying the EM-algorithm (Dempster et al. 1977) to maximise the joint
probability of (A) the verb and frame type: p(v,t), and (B) the verb and frame type

considering the selectional preferences: p(v,t,C).

It needed a fixed number of classes to be built and absolute frequencies of the verbs
appearing with the subcategorisation frames. Test runs showed that 80 clusters modeled
the semantic verb classes best. To be able to compare the analysis with the iterative
clustering approach, I also limited the number of verbs within a cluster to four — consid-
ering that generally all verbs appear within each cluster when using this approach, the
verbs with the highest respective probabilities where chosen.

For version (A) the frequencies were provided by the joint frequencies of verbs and frame
types, for version (B) I used the association values of the verbs with the frame types

considering selectional preferences, as described by equation (3.7).

The unsupervised algorithm then classified within 200 iterations joint events of verbs
and subcategorisation frames into the 80 clusters 7, based on the iteratively estimated

values

p(o,t) =D p(r,0,8) =Y p(7)p(v|r)p(t7) (3.9)

p(0,t,C) =) p(r,v,8,0) = Y p(7)p(v|7)p(t, C|7) (3.10)

for versions (A) and (B), respectively.

3.3 Evaluation

The evaluation of the resulting clusters was adjusted to Levin’s classification where the verbs
had been taken from before. The following tables 3.1 and 3.2 present the success of the two
clustering algorithms, considering the two different informational versions (A) and (B). They
contain the total number of clusters the algorithms had formed (all clusters containing between

two and four verbs concerning the iterative algorithm, and a fixed number of 80 clusters
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Information Clusters Verbs Recall |Precision
Total |Correct || Total| Correct
SFs 31 20 90 55| 36% 61%
SEs + Prefs 30 14 81 31| 20% 38%

Figure 3.1: Iterative Clustering

Information|| Clusters Verbs(Senses) || Recall |Precision
Total|Correct| Total |Correct

SFs 80 36([107(159)] 58(90)][38(40)%] 54(57)%

SFs + Prefs|| 80 22([153(226)| 47(56)[|31(25)%] 31(25)%

Figure 3.2: Latent Classes

concerning the latent class analysis), the share of correct clusters (those clusters which were
subsets of a Levin class, for example the cluster containing the verbs need, like, want, desire is
a subset of the Levin class Desire), and the number of verbs within those clusters. In table 3.2
the number of verbs in brackets refers to the respective number of their senses, since a verb
could be clustered several times according to its senses, for example the verb want could be
member of the classes Desire and Declaration.

Recall was defined by the percentage of verbs (verb senses) within the correct clusters

compared to the total number of verbs (verb senses) to be clustered:

"Ue"'bscorrecticlusters ‘ ( ‘ver‘b_SenSEchrrecticluste'rs‘

153 226 )

recall =

(3.11)

and precision was defined by the percentage of verbs (verb senses) appearing in the correct

clusters compared to the number of verbs (verb senses) appearing in any cluster:

‘Uerbscorrecticlusters ‘ "Uerbfsensescorrecticlusters|

) (3.12)

precision =

‘7}57'b5a227clusters‘ Ue"'b_'95"7'~965all7clusters‘
Concerning precision, the assignment of verbs into semantic classes was most successful when
using the iterative distance clustering method; 61% of all verbs were clustered into correct
classes. Clustering the verbs into latent classes was with 54% comparably, but less successful.
With both clustering methods the results became worse when adding information about the

selectional preferences for the arguments in the subcategorisation frames.
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3.4 Discussion

Following I present a choice of the correct clusters resulting from the different clustering
approaches, in order to demonstrate that the classifications of both approaches illustrate the
close relationship between the verbs’ alternation behaviour and their affiliation to semantic
classes: the resulting clusters which could be annotated by semantic class names show common

alternation behaviour of their verbal elements.

The iteratively generated clusters show the verbs in the clusters followed by the five sub-
categorisation frame types with the highest probabilities in the overall verbs’ distributions.
The preferences for verbs in the Desire class were towards a subject followed by an infinitival
phrase (subj:to). Alternatively a transitive subj:obj frame was used, partly followed by an

additional infinitival phrase indicated by to:'?

need * subj:to 0.382847629835582 *
* subj:obd.318590601723132 *
* subg.0962654034943192 *

* subj:obj:to 0.0536333367658669 *
* subj:obj:pp.for  0.0189647478804105 *

* subj:to 0.344067278287462 *
* subj:obg.34302752293578 *

* subd.142110091743119 *
dv 0.0364220183486239 *
bJ.0262691131498471 *

0.533195075557434 *

3520642 *

Ips to get

red by an
)e a piece
ably with

191t is striking that some wrong subcategorisation frames are listed, especially the intransitive frame type
subj, which is partly due to underlying sentences containing an NP ellipsis (like in "Our responsibililies are
as follows: you invent, I commercialize."), partly to parsing mistakes and the frame extraction.
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roll * subj(PhysObject) 0.241451670685337 *
* subj(PhysObject) :adv 0.104624830989344 *
* subj(Agent) :obj (PhysObject) 0.0722786755339997 *
* subj(LifeForm):obj(PhysObject)  0.0680756190652667 *
* subj(Agent):obj(Part) 0.0525121359227189 *

fly * subj(PhysObject) 0.335013432064644 *
* subj(PhysObject) :adv 0.123622741498 *
* subj(LifeForm):obj(PhysObject) 0.0657165877759204 *
* subj(LifeForm):pp.to(LifeForm)  0.0452314211355251 *
* subj(LifeForm) :pp.to(Agent) 0.0438113663530466 *

move * subj(PhysObject) 0.200321615821647 *
* subj(PhysObject) :adv 0.11363088866625 *
* subj(Part) 0.0925972119246233 *
* subj(Group) :adv 0.0442911091963341 *
* subj(Part) :adv 0.0395279510615529 *

The latent class analysis resulted in clusters which are presented with their probability
and the verbs with the highest probabilities for the respective cluster, according to cluster
membership and combination with the subcategorisation frame types in the columns. The dot
indicates whether the verb-frame combination was seen in the data.

Some verbs of Telling were clustered mainly according to their similar transitive use com-

bined with an infinitival phrase:

WS N 0
Cluster RIS
~ S oo
S S S S
PROB 0.0040
i) =]
5 .o
) 2 a
Q S &
oy
2 =2 =2 =2
@ h@ @
0.1734 advise| e o o o
0.1213 teach| & o .
0.1198 instruct| e e .

The verbs of Aspect alternate between a subject only, realised by an activity, an inanimate

subject followed by an infinitival phrase, and a living subject followed by a gerund:
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£39 8
Cluster NS S X
NS S S
S S S S
PROB 0.0208
S =
)
B0
-
o B0
i
E8RE 3
2Ly
eSS
222 =
=333
mm > @
0.3382 start| @ o o o
0.1945 finish| e e o
0.1846 stop| e o o
0.1584 begin| o o

Both approaches show that the relationship between alternation behaviour and semantic
class could already be established when only considering information about the syntactic usage
of the subcategorisation frames. The refinement by the frames’ selectional preferences allowed
further demarcations by the identification of conceptual restrictions on the use of the frames.
Since the latent class analysis was able to assign verbs to several clusters, this further distinc-
tion can be referred to as distinguishing between the different verbs’ senses and the respective
uses of subcategorisation frames. For example, consider the following two clusters where the
verb play was once clustered with meet because of the common strong tendency towards a
transitive frame illustrating a general meeting, and once it was clustered with fight because of
their common preference for an intransitive frame together with a prepositional phrase headed

by against, when illustrating a more aggressive meeting like a match or a fight:

0w O O
Cluster XERI
S 33
o o oo
PROB 0.0095
=
E 3
[=-%
a o
g T3
2 Qe
oy
ERERERE
@ @b @
0.4947 meet| o o o @
0.1954 play| e e e o
- T M
Cluster 223
— - O O
S 3o S
PROB 0.0018
i
g
1 5
g <
g -]
) s
ooz
&9 9 Q
oy
=2 =3 =2 3
@b @b @n
0.2212 fight| ¢ o e o
0.1959 play| e o o o
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An extensive investigation of the linguistic reliability of the verbs’ and clusters’ subcat-
cgorisation frames showed that the characterising usages could actually be underlined by
cxample sentences, for example the above cited transitive use of the verb fly concerning the
subj:obj frame type with a living subject and an inanimate object can be illustrated by the
BNC-sentence Today the older pilot flies the aircraft.

This means that the linguistic properties as modelled for the approaches agree with (a selective
part of) the verbs’ properties. The clusters were therefore created on a reliable linguistic basis,
an important fact to ensure, since an unreliable representation would question the successful

relation between alternation behaviour and semantic classes.

A strange result seemed to be the fact that the clustering of the verbs became worse with
both algorithms when taking the information about the frames’ selectional preferences into
account. This was due partly to the quality of the linguistic basis which has to be differentiated
concerning the two informational versions: concerning version (A) there was little noise in the
descriptions of the verbs’ subcategorisation frames, as my study of linguistic reliability showed.
Concerning version (B) the problems increased. Since the increase of noise correlated with the
decrease of precision concerning the clustering success, this seemed an important factor to
investigate: considering each argument slot within a subcategorisation frame on its own, the
preferred conceptual classes illustrated linguistic reliable possibilities to insert arguments. But
by the combination of the classes too many combinatorial possibilities had been created, so the
combinations were not always possible to underlie with examples. The solution to this problem
should be a different formulation of the conceptual class types, to ensure an improved token
per type relation in order to avoid the data sparseness in tokens.

Both algorithms were confronted with two further problems:

e Polysemy:

The different verb senses were hidden in the representation for one verb. That is, it
was not obvious how to filter the uncertain number of senses out of the word-form.
The iterative distance clustering completely failed to model verb senses; a polysemous
verb was because of its opaque representation either not at all assigned to a cluster,
or assigned to one cluster to which one of the verb’s senses belongs. The latent class
analysis was able to filter the multiple senses and assign them to distinct clusters, but

tended to over-interpret.

e Low Frequency:
Verbs which rarely appeared were difficult to cluster, since the necessary background
was missing. The latent class analysis suffered from this sparse data, since those verbs
were always assigned low probabilities. Distance clustering suffered even more, since — in
addition to the sparse data concerning the verb’s usage — also the information about
the co-occurrence with subcategorisation frames was missing, so the verb’s distribution

contained mostly zeroes, a difficult mathematical basis.
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Turning to the specific problems of the clustering algorithms, I first investigated the iter-

ative clustering: letting each verb point to the closest verb as measured by relative entropy
showed that 61%/36% in the respective versions chose a verb from the same semantic class.
The conclusions from this investigation are two-fold: (i) the percentages can be considered as
an upper boundary for what could have been achieved by the clustering method, since not
more verbs than those pointing to a verb from the same class could be clustered correctly, so
to achieve a better result other distance measures should be considered, and (ii) there is a loss
of correct assignments when taking into account that — as table 3.1 shows — only 36%/20%
of the verbs were finally found in correct clusters, which had to be caused by the merging
process and the limit on the size of the clusters, so those were less than optimal and worth to
be developed further.
Investigating the latent class analysis could underline that the data sparseness as mentioned
before caused problems for the training process. In total there were only 6,873 verb-frame
types for version (B) which was a too narrow basis. For version (A) I had 27,016 verb-frame
types, but differently to (B) only 88 different frames, so creating 80 different clusters had the
tendency to result in some classes where only one frame was favoured.

3.5 Conclusion

I proposed two algorithms for automatically classifying verbs semantically, based on their
alternation behaviour. Taking Levin (Levin 1993) as golden standard for 153 manually chosen
verbs with 226 verb senses and their assignment into 30 semantic classes, the iterative distance
clustering succeeded for 61% of the verbs considering the syntactic usage of the frames only,
and for 38% when adding information about the frames’ arguments’ sclectional preferences.

The latent class analysis succeeded for 54% and 31%, respectively.

An investigation of the resulting clusters showed that the assignment of the verbs was
actually based on their shared linguistic properties: the verbs in a cluster presented a common
alternation behaviour. The common properties within one cluster were refined when adding
information about the selectional preferences to the syntactic description of the subcategori-

sation frames.

The discussion demonstrated that some problems in the classification process still have to

be solved:

e An obvious problem in the clustering was the fact that the results were worse when
incorporating the definition of the frames’ selectional preferences. The representation of
the subcategorisation frames including information about their selectional preferences
should be improved to ensure a better token per type relation.

e The polysemy of verbs presented a problem, especially for the distance clustering, which

could not distinguish between the multiple senses.
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e Both approaches had difficulties in clustering low-frequency verbs, since the data could

not be delimited in the clustering process.

Considering the overall motivation of this work, a successful step into the direction of
presenting the connection between the verbs’ alternation behaviour and their semantics by

automatic means is done. Naturally, there are possibilities to improve the process.
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Appendix 1: Subcategorisation Frames

Part 1.1 contains a list of the 88 subcategorisation frame types which built the basis for the
syntactic description of the verbs. The frames are numbered from 0 to 87. Explanations about
the syntactic features within the frames can be found in part 1.2. The appendix is concluded

in part 1.3 by the joint frequencies of the verb give concerning the frame types.

1.1 Frame Types

0 subj

1 subj:adv

2 subj:ap

3 subj:obj

4 subj:obj:adv

5 subj:obj:ap

6 subj:obj:as

7 subj:obj:obj

8 subj:obj:obj:adv

9 subj:obj:obj:pp.at
10 subj:obj:obj:pp.for
11 subj:obj:obj:pp.in
12 subj:obj:obj:pp.on
13 subj:obj:obj:pp.to
14 subj:obj:obj:pp.with
15 subj:obj:pp.about
16 subj:obj:pp.after
17 subj:obj:pp.against
18 subj:obj:pp.as

19 subj:obj:pp.at

20 subj:obj:pp.before
21 subj:obj:pp.between
22 subj:obj:pp.by

23 subj:obj:pp.during
24 subj:obj:pp.for

25 subj:obj:pp.from

26 subj:obj:pp.in

27 subj:obj:pp.in:adv
28 subj:obj:pp.in:pp.in
29 subj:obj:pp.into

30 subj:obj:pp.like

31 subj:obj:pp.of

32 subj:obj:pp.on

33 subj:obj:pp.out_of
34 subj:obj:pp.over

35 subj:obj:pp.through

36 subj:obj:pp.to
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37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84

subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj:
subj:
subj:
subj:
subj:
subj:

1obj
:obj
:obj
iobj
:obj
:obj
:obj
tobj:
1obj
iobj:
:obj
:pp-
:ppP-
ipPpP-
:pp-
:pp-
‘PP
ipPpP-
:pp-
:ppP-
‘PP
:pp-
:pp-
:pPpP-
‘PP
IpP-
:pp-
:ppP-
‘PP
Ipp-
:pp-
:pp-
‘PP
:ppP-
iPP-
:ppP-
:pp-
‘PP
‘pPP-
:pp-
:pp-
:ppP-

:pp -under
:pp.with
:pp.within
:pp.without
:ppart

'S

:sub

:that

:to

:vbase
:vger
about
across
after
against

as

-at

at:adv
between
by

.for

for:adv
from
from:pp.to
in

in:adv
into

like

.of

on
on:adv
out_of
over
through
to
to:adv
towards

.under

up_to
upon
with

with:adv

ppart

s

sub
that

to

to:

adv
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85 subj:vbase
86 subj:vbase:adv
87 subj:vger

1.2 Frame Features

Syntactic features of the frame types, as defined by the English grammar:

adv adverb

ap adjectival phrase

as as-expression

PP prepositional phrase

ppart stranded preposition

s sentence

that subordinated that-phrase

to infinitive form of verb after ’to’
vbase base form of verb

vger gerund

and additional identifiers:

subj subject of the sentence

obj object of the sentence

1.3 Joint Frequencies of the Verb give concerning the Frame Types

The following list displays the joint frequencies of the verb give concerning the frame types
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in column two. For frame types defined in appendix 3.5 which do not appear here the joint

frequency was zero.

give subj 758
give subj:adv 105
give subj:ap 58
give subj:obj 9,982
give subj:obj:adv 498
give subj:obj:ap 60
give subj:obj:as 53
give subj:obj:obj 13,430
give subj:obj:obj:adv 158
give subj:obj:obj:pp.at 59
give subj:obj:obj:pp.for 144
give subj:obj:obj:pp.in 238
give subj:obj:obj:pp.on 68
give subj:obj:obj:pp.to 240
give subj:obj:obj:pp.with 39
give subj:obj:pp.about 57
give subj:obj:pp.after 42
give subj:obj:pp.against 14

give subj:obj:pp.as 171
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give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give
give

give

subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj

1obj
:obj
:obj
iobj
:obj
:obj
1obj
:obj
1obj
iobj
1obj
:obj
:obj
iobj
1obj
:obj
:obj
iobj
1obj
:obj
:obj
:obj
:obj
:obj
:obj
:obj
:obj
:obj
:obj
IPP-
‘pp-
‘PP-
‘PP-
‘pPpP-
‘PP-
‘pPpP-
‘pp-
‘PP
‘PpP-
‘PP-
‘pp-
‘PP
ipp-i
‘PP-
‘pp-
‘PP-
‘PpP-
‘PP-

:pp-
:pp-
:ppP-
.by
:ppP-
:pp-
:pp-
:pp-
:pp-
ipPpP-
:pp-
:pp-
.of
ipPpP-
:pp-
:pp-
-through

‘PP

‘PP

‘PP

‘PP-
‘PP-
‘PP-
‘PP-
IPP-

at
before

between

during
for

from

in
in:adv
in:pp.in
into
like

on
out_of

over

to
under
with
within
without

:ppart

s

:sub

:that

ito

:vbase

1vger

about

across

after

against

as
at

at:adv

between

.by

for

for:

adv

from

.from:pp.to

220
24

40
30
566
56
936
16
11
17

198
234
16
35
15
3,735
26
103
15
36
98
35
16
67
277
15
35

10
17

50

31
14
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give
give
give
give
give
give
give
give
give
give
give
give
give
give
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subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
subj
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:PP-
:pp-
:pp-
‘PP
:pp-
:pp-
IPP-
Ipp-
‘PP
:ppart
s

through
to
to:adv
.towards
under
up_to
upon
with
.with:adv

:sub
:that
:to
:vbase
:vbase:adv

1vger

288
17

73
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Appendix 2: WordNet (Top) Synsets

There are 11 top level nodes of 11 hierarchies in WordNet. Since the concept of Entity seemed
too general as conceptual class, I replaced it by the next lower levels (13 different synsets).
Each WordNet synset is defined by an identifying abbreviation, followed by the nouns which

are member of that synset:

Entity: entity
=> LifeForm: life form, organism, being, living thing
=> Cell: cell
=> Agent: causal agent, cause, causal agency
=> PhysObject: object, inanimate object, physical object
=> Thing: thing
=> Whole: whole, whole thing, unit
=> Content: subject, content, depicted object
=> Unit: unit, building block
=> Part: part, piece
=> Essential: necessity, essential, requirement,
requisite, necessary, need
=> Inessential: inessential
=> Variable: variable

=> Anticipation: anticipation

Psycho: psychological_feature

Abstract: abstraction

Location: location

Shape: shape, form

State: state

Event: event

Action: act, human_action, human_activity
Group: group, grouping

Possession: possession

h . oh
Pl P on




Inside-Outside Estimation of a Lexicalized PCFG for

German

— GOoLD —

Franz Beil, Glenn Carroll, Detlef Prescher, Stefan Riezler, and Mats Rooth

Abstract

The paper describes an extensive experiment in inside-outside estimation of a lexi-
calized probabilistic context free grammar for German verb-final clauses. Grammar
and formalism features which make the experiment feasible are described. Successive

models are evaluated on precision and recall of phrase markup.
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4.1 Introduction

Charniak (1995) and Carroll and Rooth (1998) present head-lexicalized probabilistic context
free grammar formalisms, and show that they can effectively be applied in inside-outside
estimation of syntactic language models for English, the parameterization of which encodes
lexicalized rule probabilities and syntactically conditioned word-word bigram collocates. The
present paper describes an experiment where a slightly modified version of Carroll and Rooth’s
model was applied in a systematic experiment on German, which is a language with rich
inflectional morphology and free word order (or rather, compared to English, free-er phrase
order). We emphasize techniques which made it practical to apply inside-outside estimation
of a lexicalized context free grammar to such a language. These techniques relate to the
treatment of argument cancellation and scrambled phrase order; to the treatment of case
features in category labels; to the category vocabulary for nouns, articles, adjectives and their
projections; to lexicalization based on uninflected lemmata rather than word forms; and to

exploitation of a parameter-tying feature.

4.2 Corpus and morphology

The data for the experiment is a corpus of German subordinate clauses extracted by regular
expression matching from a 200 million token newspaper corpus. The clause length ranges
between four and 12 words. Apart from infinitival VPs as verbal arguments, there are no further
clausal embeddings, and the clauses do not contain any punctuation except for a terminal
period. The corpus contains 4128873 tokens and 450526 clauses which yiclds an average of
9.16456 tokens per clause. Tokens are automatically annotated with a list of part-of-speech
(PoS) tags using a computational morphological analyser based on finite-state technology
(Karttunen et al. (1994), Schiller and Stéckert (1995)).

A problem for practical inside-outside estimation of an inflectional language like German
arises with the large number of terminal and low-level non-terminal categories in the grammar
resulting from the morpho-syntactic features of words. Apart from major class (noun, adjective,
and so forth) the analyser provides an ambiguous word with a list of possible combinations of
inflectional features like gender, person, number (cf. the top part of Fig. 4.1 for an example
ambiguous between nominal and adjectival PoS; the PoS is indicated following the '+’ sign; the

[P

features enclosed between ’~’ and '+’ indicate the derivation if available; the entry is headed by
the lemma of the analysandum; Pos is the feature for an adjective’s positive form as opposed
to comparative or superlative; the '*’-sign marks uppercase forms.). In order to reduce the
number of parameters to be estimated, and to reduce the size of the parse forest used in inside-
outside estimation, we collapsed the inflectional readings of adjectives, adjective derived nouns,

article words, and pronouns to a single morphological feature (see separated last line in Fig.
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analyze> Deutsche
deutsch~ADJ.Pos+NN.Fem. Akk.Sg
deutsch~ADJ.Pos+NN.Fem.Nom.Sg
deutsch~ADJ.Pos+NN.Masc.Nom.Sg.Sw
deutsch~ADJ.Pos+NN.Neut . Akk.Sg.Sw

. deutsch~ADJ.Pos+NN.Neut .Nom.Sg.Sw

. deutsch”ADJ.Pos+NN.NoGend.Akk.P1.St
. deutsch~ADJ.Pos+NN.NoGend.Nom.P1.St
. *deutsch+ADJ.Pos.Fem.Akk.Sg

. *deutsch+ADJ.Pos.Fem.Nom.Sg

. *deutsch+ADJ.Pos.Masc.Nom.Sg.Sw

. *deutsch+ADJ.Pos.Neut.Akk.Sg.Sw

. *deutsch+ADJ.Pos.Neut.Nom.Sg.Sw

. *deutsch+ADJ.Pos.NoGend.Akk.P1.St

. *deutsch+ADJ.Pos.NoGend.Nom.P1.St

W 0 N U W N

= e
BOwWw N B
o

==> Deutsche { ADJ.E, NNADJ.E }

Figure 4.1: Collapsing Inflectional Features

wahrend { ADJ.Adv, ADJ.Pred, KOUS, APPR.Dat, APPR.Gen }
sich { PRF.Z }

das { DEMS.Z, ART.Def.Z }

Preisniveau { NN.Neut.NotGen.Sg }

dem { DEMS.M, ART.Def.M }

westdeutschen { ADJ.N }
annihere { VVFIN }
. { PER }

Figure 4.2: Corpus Clip

4.1 for an example). This reduced the number of low-level categories, as exemplified in Fig. 4.2:
das has one reading as an article and one as a demonstrative; westdeutschen has one reading
as an adjective, with its morphological feature N indicating the inflectional suffix.

We use the special tag UNTAGGED indicating that the analyser fails to provide a tag for the
word. The vast majority of UNTAGGED words are proper names not recognized as such. These

gaps in the morphology have little effect on our experiment.

4.3 Grammar

The grammar is a manually developed headed context-free phrase structure grammar for
German subordinate clauses with 5508 rules and 562 categories, 209 of which are terminal
categories. The formalism is that of Carroll and Rooth (1998), henceforth C4R:

78 AIMS VOL. 4 NO.3 1998
Sarajewn
ker [#] 1.000000 IP

0661299 VPP.np.np
0125435 VPP
0104186 VPKn
0.067692 VPP.dp.dp
0.020743 VPP
0.000556 VPP.ncl.nd
0.000029 VPP

den
Flughafen
i

dem

Nitigeten
versorgt
werden

Kann

Word-by-word gloss of the clause on the left:

’that Sarajevo over the airport with the essentials supplied will can’

Figure 4.3: Chart browser

mother -> non-heads head’ non-heads (freq)

The rules are head marked with a prime. The non-head sequences may be empty. freq
is a rule frequency, which is initialized randomly and subsequently estimated by the inside
outside-algorithm. To handle systematic patterns related to features, rules were generated by
Lisp functions, rather than being written directly in the above form. With very few exceptions

(rules for coordination, S-rule), the rules do not have more than two daughters.

Grammar development is facilitated by a chart browser that permits a quick and efficient
discovery of grammar bugs (Carroll 1997a). Fig. 4.3 shows that the ambiguity in the chart is
quite considerable even though grammar and corpus are restricted. For the entire corpus, we
computed an average 9202 trees per clause. In the chart browser, the categories filling the cells
indicate the most probable category for that span with their estimated frequencies. The pop-up
window under IP presents the ranked list of all possible categories for the covered span. Rules
(chart edges) with frequencies can be viewed with a further menu. In the chart browser, colors
are used to display frequencies (between 0 and 1) estimated by the inside-outside algorithm.
This allows properties shared across tree analyses to be checked at a glance; often grammar

and estimation bugs can be detected without mouse operations.

The grammar covers 88.5% of the clauses and 87.9% of the tokens contained in the corpus.
Parsing failures are mainly due to UNTAGGED words contained in 6.6% of the failed clauses, the
pollution of the corpus by infinitival constructions (=1.3%, and a number of coordinations

not covered by the grammar (~1.6%).
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NP.Nom NP.AKk NP.Gen NP.Dat NP.Gen NP.Dat
NC.Dir NC.Obl NC.Obl
ARTLE NN1.Fem.Dir.Sw ARTLIndefR  NNLFem.Obl.Sw NN1.Fem.Obl.St
ART.Indef.E ADJLE  NNLFemDirSw  ART.Indef.R ADJLN  NNLFem.Obl.Sw ADJLR  NNLFem.OblSt
“eine” “einer”
ADJ.E NN.Fem.Cas.Sg ADJN NN.Fem.Cas.Sg ADJ.R NN.Fem.Cas.Sg
“gute” “Gelegenheit" “anderen” "Gelegenheit" “anderer" "Gelegenheit"

Glosses:’a good opportunity’, 'a different opportunity’, ’different opportunity’

Figure 4.4: Noun Projections

4.3.1 Case features and agreement

On nominal categories, in addition to the four cases Nom, Gen, Dat, and Akk, case features
with a disjunctive interpretation (such as Dir for Nom or Akk) are used. The grammar is
written in such a way that non-disjunctive features are introduced high up in the tree. Figure
4.4 illustrates the use of disjunctive features in noun projections: The terminal NN contains
the four-way ambiguous Cas case feature; the N-bar (NN1) and noun chunk NC projections
disambiguate to two-way ambiguous case features Dir and 0bl; the weak/strong (Sw/St)
feature of NN1 facilitates or prevents combination with a determiner, respectively; only as soon
as the NP projection, the case feature appears in disambiguated form. The use of disjunctive
case features results in some reduction in the size of the parse forest, and some parameter
pooling. Essentially the full range of agreement inside the noun phrase is enforced. Agreement
between the nominative NP and the tensed verb (e.g. in number) is not enforced by the

grammar, in order to control the number of parameters and rules.

For noun phrases we employ Abney’s chunk grammar organization (Abney 1996). The noun
chunk (NC) is an approximately non-recursive projection that excludes post-head complements
and (adverbial) adjuncts introduced higher than pre-head modifiers and determiners but in-
cludes participial pre-modifiers with their complements. Since we perform complete context
free parsing, parse forest construction, and inside-outside estimation, chunks are not moti-
vated by deterministic parsing. Rather, they facilitate evaluation and graphical debugging, by

tending to increase the span of constituents with high estimated frequency.
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class # frame types

VPA 15 n, na, nad, nai, nap, nar, nd, ndi,
ndp, ndr, ni, nir, np, npr, nr
VPP 13 d, di, dp, dr, i, ir, n, nd, ni, np, p,

pr9 r
VPI 10 a, ad, ap, ar, d, dp, dr, p, pr, r
VPK 2 i,n

Table 4.1: Number and types of verb frames

VPA.na.na VPA.na.na

N N

NP.Nom VPA.na.a NP.Akk VPA.na.n

NN

NP.Akk VPA.na NP.Nom VPA.na

Figure 4.5: Coding of canonical and scrambled argument order

4.3.2 Subcategorisation frames of verbs

The grammar distinguishes four subcategorisation frame classes: active (VPA), passive (VPP),
infinitival (VPI) frames, and copula constructions (VPK). A frame may have maximally three
arguments. Possible arguments in the frames are nominative (n), dative (d) and accusative (a)
NPs, reflexive pronouns (r), PPs (p), and infinitival VPs (i). The grammar does not distinguish
plain infinitival VPs from zu-infinitival VPs. The grammar is designed to partially distinguish
different PP frames relative to the prepositional head of the PP. A distinct category for the
specific preposition becomes visible only when a subcategorized preposition is cancelled from
the subcat list. This means that specific prepositions do not figure in the evaluation discussed

below. The number and the types of frames in the different frame classes are given in Table 4.1.

German, being a language with comparatively free phrase order, allows for scrambling of
arguments. Scrambling is reflected in the particular sequence in which the arguments of the
verb frame are saturated. Compare Figure 4.5 for an example of a canonical subject-object
order in an active transitive frame and its scrambled object-subject order. The possibility
of scrambling verb arguments yields a substantial increase in the number of rules in the
grammar (e.g. 102 combinatorically possible argument rules for all in VPA frames). Adverbs
and non-subcategorized PPs are introduced as adjuncts to VP categories which do not saturate

positions in the subcat frame.

In carlier experiments, we employed a flat clausal structure, with rules for all permutations
of complements. As the number of frames increased, this produced prohibitively many rules,

particularly with the inclusion of adjuncts.
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4.4 Parameters

The parameterization is as in C+R, with one significant modification. Parameters consist
of (i) rule parameters, corresponding to right hand sides conditioned by parent category and
parent head; (ii) lexical choice parameters for non-head children, corresponding to child lemma
conditioned by child category, parent category, and parent head lemma. See C+R or Charniak
(1995) for an explanation of how such parameters define a probabilistic weighting of trees.
The change relative to C+R is that lexicalization is by uninflected lemma rather than word
form. This reduces the number of lexical parameters, giving more acceptable model sizes and
climinating splitting of estimated frequencies among inflectional forms. Inflected forms are
generated at the leaves of the tree, conditioned on terminal category and lemma. This results

in a third family of paramecters, though usually the choice of inflected form is deterministic.

A parameter pooling feature is used for argument filling where all parent categories of
the form VP.x.y are mapped to a category VP.x in defining lexical choice parameters. The
consequence is e.g. that an accusative daughter of a nominative-accusative verb uses the same
lexical choice parameter, whether a default or scrambled word order is used. (This feature was
used by C+R for their phrase trigram grammar, not in the linguistic part of their grammar.)
Not all desirable parameter pooling can be expressed in this way, though; for instance rule
parameters are not pooled, and so get split when the parent category bears an inflectional
feature.

4.5 Estimation

The training of our probabilistic CFG proceeds in three steps: (i) unlexicalized training with
the supar parser, (ii) bootstrapping a lexicalized model from the trained unlexicalized one
with the ultra parser, and finally (iii) lexicalized training with the hypar parser (Carroll
1997b). Each of the three parsers uses the inside-outside algorithm. supar and ultra use
an unlexicalized weighting of trees, while hypar uses a lexicalized weighting of trees. ultra
and hypar both collect frequencies for lexicalized rule and lexical choice events, while supar

collects only unlexicalized rule frequencies.

Our experiments have shown that training an unlexicalized model first is worth the ef-
fort. Despite our use of a manually developed grammar that does not have to be pruned of
superfluous rules like an automatically generated grammar, the lexicalized model is notably
better when preceded by unlexicalized training (see also Ersan and Charniak (1995) for related
observations). A comparison of immediate lexicalized training (without prior training of an
unlexicalized model) and our standard training regime that involves preliminary unlexicalized
training speaks in favor of our strategy (cf. the different ’lex 0’ and ‘lex 2 curves in figures

4.7 and 4.8). However, the amount of unlexicalized training has to be controlled in some way.
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A B C

52.0199 1: 53.7654 1: 49.8165
2:  25.3652 2: 26.3184 2: 23.1008
3: 24.5905 3: 25.5035 3: 22.4479

13:  24.2872 55:  25.0548 70:  22.1445
14:  24.2863 56:  25.0549 80: 22.1443
15:  24.2861 57:  25.0549 90: 22.1443
16:  24.2861 58: 25.0549 95:  22.1443
17: 24.2867 59:  25.055 96:  22.1444

Table 4.2: Overtraining (iteration: cross-entropy on heldout data)

A standard criterion to measure overtraining is to compare log-likelihood values on held-out
data of subsequent iterations. While the log-likelihood value of the training data is theoretically
guaranteed to converge through subsequent iterations, a decreasing log-likelihood value of the
held-out data indicates overtraining. Instead of log-likelihood, we use the inversely proportional
cross-entropy measure. Table 4.2 shows comparisons of different sizes of training and heldout
data (training/heldout): (A) 50k/50k, (B) 500k/500k, (C) 4.1M/500k. The overtraining effect
is indicated by the increase in cross-entropy from the penultimate to the ultimate iteration in

the tables. Overtraining results for lexicalized models are not yet available.

However, a comparison of precision/recall measures on categories of different complexity
through iterative unlexicalized training shows that the mathematical criterion for overtraining
may lead to bad results from a linguistic point of view. While we observed more or less
converging precision/recall measures for lower level structures such as noun chunks, iterative
unlexicalized training up to the overtraining threshold turned out to be disastrous for the
evaluation of complex categories that depend on almost the entire span of the clause. The
recognition of subcategorization frames through 60 iterations of unlexicalized training shows
a massive decrease in precision/recall from the best to the last iteration, even dropping below

the results with the randomly initialized grammar (sce Figure 4.8).

4.5.1 Training regime

We compared lexicalized training with respect to different starting points: a random unlexi-
calized model, the trained unlexicalized model with the best precision/recall results, and an
unlexicalized model that comes close to the cross-entropy overtraining threshold. (For the ef-
fect of differently randomized rule frequencies, we refer the reader to Appendix 2.) The details

of the training steps are as follows:

(1) 0,2 and 60 iterations of unlexicalized parsing with supar;

(2) lexicalization with ultra using the entire corpus;
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eigenen
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Reihen
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Word-by-word gloss of the clause:
’that he himself in his own ranks hiw skin defend must’

Figure 4.6: Chart browser for manual NC labelling

(3) 23 iterations of lexicalized parsing with hypar.

The training was done simultaneously on four machines (two 167 MHz UltraSPARC with
188 MB and 312 MB main memory, and two 296 MHz SUNW UltraSPARC-II with 1.1 GB
main memory). Using the grammar described here, one iteration of supar on the entire corpus
takes about 2.5 hours, lexicalization and generating an initial lexicalized model takes more

than six hours, and an iteration of lexicalized parsing can be done in 5.5 hours.

4.6 Evaluation

For the evaluation, a total of 600 randomly selected clauses were manually annotated by two
labellers. Using a chart browser, the labellers filled the appropriate cells with category names
NC and PPART, and those of maximal VP projections (cf. Figure 4.6 for an example of NC-
labelling). We included prepositional phrases with preposition incorporated determiners (i.e.
PPART, c.g. ’beim Zahnarzt’, ’at the dentist’) in the set of annotated noun chunks because
the left boundary of the NC contained within the prepositional phrase is incorporated into the
preposition word. Subsequent alignment of the labellers decisions resulted in a total of 1353
labelled NC categories: 627 NC.Nom, 319 NC.Akk, 253 NC.Dat, 75 NC.Gen, 73 PPART.Dat, and
6 PPART.Akk. The total of 584 labelled VP categories subdivides into 21 different verb frames
with 340 different lemma heads. The dominant frames are active transitive (164 occurrences)
and active intransitive (117 occurrences). They represent almost half of the annotated frames.
Thirteen frames occur less than ten times, five of which just once (compare Table 4.3 for the
numbers of individual frames).
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VPA.na 164 VPP 4
VPAn 117 VPPp 3
VPK.n 90 VPA.npr 3
VPP.n 64 VPAni 2
VPAnp 62 VPA.ndr 2
VPAnor 19 VPPd 1
VPAnd 16 VPLp 1
VPA.nap 12 VPlLa 1
VPP.np 9 VPAnir 1
VPA.nad 8 VPA.ndp 1
VPP.nd 4

Table 4.3: Frames in the test set

4.6.1 Methodology

To evaluate iterative training, we extracted maximum probability (Viterbi) trees for the 600
clause test set in each iteration of parsing. For extraction of a maximal probability parse
in unlexicalized training, we used Schmid’s lopar parser (Schmid 1999). Trees were mapped
to a database of parser generated markup guesses, and we measured precision and recall
against the manually annotated category names and spans. Precision gives the ratio of correct
guesses over all guesses, and recall the ratio of correct guesses over the number of phrases
identified by human annotators. Here, we render only the precision/recall results on pairs of
category names and spans, neglecting less interesting measures on spans alone. For the figures
of adjusted recall, the number of unparsed misses has been subtracted from the number of

possibilities.

In the following, we focus on the combination of the best unlexicalized model and the
lexicalized model that is grounded on the former. In addition, as mentioned in section 4.5.1,
we compare the results for our best lexicalized model (i) to a trained lexicalized model resulting
from lexicalization of a random grammar and (ii) to a trained lexicalized model derived from
an excessively trained unlexicalized model. The precision and recall plots for those models are
labelled 1lex 00 and lex 60, respectively.

Furthermore, in Appendix 3, we compare the training results with respect to varying initial
random states of the grammar.

4.6.2 NC Evaluation

Figure 4.7 plots precision/recall for the training runs described in section 4.5.1, with lexicalized
parsing starting after 0, 2, or 60 unlexicalized iterations. The best results are achieved by
starting with lexicalized training after two iterations of unlexicalized training. Of a total of

1353 annotated NCs with case, 1103 are correctly recognized in the best unlexicalized model
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and 1112 in the last lexicalized model. With a number of 1295 guesses in the unlexicalized and
1288 guesses in the final lexicalized model, we gain 1.2% in precision (85.1% vs. 86.3%) and
0.6% in recall (81.5% vs. 82.1%) through lexicalized training. Adjustment to parsed clauses
yields 88% vs. 89.2% in recal. As shown in Figure 4.7, the gain is achieved already within the

first iteration; it is equally distributed between corrections of category boundaries and labels.

o.88
0.86 q
0.84 H \ e j
0.82 4
E] os [ 1
s 0.78 | ’ R
@
g_ 0.76 | S precision lex 02 —— -
; " precision unlex --—-----
0.74 .7 precision lex 00 -- 4
precision lex 60
L recall lex 02 ----- i
07z R recall unlex ----
L recall lex 00 ~--
0.7 [~ recall lex 60 -]
0.68 . . . . . . . . .
10 20 30 40 50 60 70 80 90
iteration #

Figure 4.7: Precision/recall measures on NCs with case (random 0)

The comparatively small gain with lexicalized training could be viewed as evidence that
the chunking task is too simple for lexical information to make a difference. However, we find
about 7% revised guesses from the unlexicalized to the first lexicalized model. Currently, we

do not have a clear picture of the newly introduced errors.

The plots labeled “00” are results for lexicalized training starting from a random initial
grammar. The precision measure of the first lexicalized model falls below that of the un-
lexicalized random model (74%), only recovering through lexicalized training to equalize the
precision measure of the random model (75.6%). This indicates that some degree of unlexical-

ized initialization is necessary, if a good lexicalized model is to be obtained.

Skut and Brants (1998) report 84.4% recall and 84.2% for NP and PP chunking without
case labels. While these are numbers for a simpler problem and are slightly below ours, they
are figures for an experiment on unrestricted sentences. A genuine comparison has to await

extension of our model to free text.

4.6.3 Verb Frame Evaluation

Figure 4.8 gives results for verb frame recognition under the same training conditions. Again,
we achieve best results by lexicalizing the second unlexicalized model. Of a total of 584 an-
notated verb frames, 384 are correctly recognized in the best unlexicalized model and 397
through subsequent lexicalized training. Precision for the best unlexicalized model is 68.4%.
This is raised by 2% to 70.4% through lexicalized training; recall is 65.7%/68%; adjustment
by 41 unparsed misses makes for 70.4%/72.8% in recal. The rather small improvements are in
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contrast to 88 differences in parser markup, i.c. 15.7%, between the unlexicalized and sccond
lexicalized model. The main gain is observed within the first two iterations (cf. Figure 4.8; for

readability, we dropped the recall curves when more or less parallel to the precision curves).
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Figure 4.8: Precision measures on all verb frames (random 0)

Results for lexicalized training without prior unlexicalized training are better than in the
NC evaluation, but fall short of our best results by more than 2%.

The most notable observation in verb frame evaluation is the decrease of precision of
frame recognition in unlexicalized training from the second iteration onward. After scveral
dozen iterations, results are 5% below a random model and 14% below the best model. The
primary reason for the decrease is the mistaken revision of adjoined PPs to argument PPs.
E.g. the required number of 164 transitive frames is missed by 76, while the parser guesses
64 VPA.nap frames in the final iteration against the annotator’s baseline of 12. In contrast,

lexicalized training generally stabilizes w.r.t. frame recognition results after only few iterations.

The plot labeled “lex 60” gives precision for a lexicalized training starting from the unlexi-
calized model obtained with 60 iterations, which measured by linguistic criteria is a very poor
state. As far as we know, lexicalized EM estimation never recovers from this bad state.

4.6.4 Evaluation of non-PP Frames

Because examination of individual cases showed that PP attachments are responsible for many
crrors, we did a separate cvaluation of non-PP frames. We filtered out all frames labelled
with a PP argument from both the maximal probability parses and the manually annotated
frames (91 filtered frames), measuring precision and recall against the remaining 493 labeller
annotated non-PP frames.

For the best lexicalized model, we find somewhat but not excessively better results than
those of the evaluation of the entire set of frames. Of 527 guessed frames in parser markup,

382 arc correct, i.c. a precision of 72.5%. The recall figure of 77.5% is considerably better since
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Figure 4.9: Precision measures on non-PP frames (random 0)

overgeneration of 34 guesses is neglected. The differences with respect to different starting

points for lexicalization emulate those in the evaluation of all frames.

The rather spectacular looking precision and recall differences in unlexicalized training
confirm what was observed for the full frame sct. From the first trained unlexicalized model
throughout unlexicalized training, we find a steady increase in precision (70% first trained
model to 78% final model) against a sharp drop in recall (78% peck in the second model vs.
50% in the final). Considering our above remarks on the difficulties of frame recognition in
unlexicalized training, the sharp drop in recall is to be expected: Since recall measures the
correct parser guesses against the annotator’s baseline, the tendency to favor PP-arguments
over PP-adjuncts leads to a loss in guesses when PP-frames are abandoned. Similarly, the rise
in precision is mainly explained by the decreasing number of guesses when cutting out non-PP

frames. For further discussion of what happens with individual frames, sece Appendix 1.

One systematic result in these plots is that performance of lexicalized training stabilizes
after a few iterations. This is consistent with what happens with rule parameters for individual

verbs, which are close to their final values within five iterations.

4.7 Conclusion

Our principal result is that scrambling-style free-er phrase order, case morphology and sub-
categorization, and NP-internal gender, number and case agreement can be dealt with in a
head-lexicalized PCFG formalism by means of carefully designed categories and rules which
limit the size of the packed parse forest and give desirable pooling of parameters. Hedging this,
we point out that we made compromises in the grammar (notably, in not enforcing nominative-

verb agreement) in order to control the number of categories, rules, and parameters.

A second result is that iterative lexicalized inside-outside estimation appears to be benefi-
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cial, although the precision/recall increments are smal. We believe this is the first substantial
investigation of the utility of iterative lexicalized inside-outside estimation of a lexicalized
probabilistic grammar involving a carefully built grammar where parses can be evaluated by

linguistic criteria.

A third result is that using too many unlexicalized iterations (more than two) is detri-
mental. A criterion using cross-entropy overtraining on held-out data dictates many more

unlexicalized iterations, and this criterion is therefore inappropriate.

Finally, we have clear cases of lexicalized EM estimation being stuck in linguistically bad
states. As far as we know, the model which gave the best results could also be stuck in a
comparatively bad state. We plan to experiment with other lexicalized training regimes, such

as ones which alternate between different training corpora.

The experiments are made possible by improvements in parser and hardware speeds, the
carefully built grammar, and evaluation tools. In combination, these provide a unique envi-
ronment for investigating training regimes for lexicalized PCFGs. Much work remains to be
done in this area, and we feel that we are just beginning to develop understanding of the time
course of parameter estimation, and of the general efficacy of EM estimation of lexicalized
PCFGs as evaluated by linguistic criteria.

We believe our current grammar of German could be extended to a robust free-text
chunk/phrase grammar in the style of the English grammar of Carroll and Rooth (1998) with
about a month’s work, and to a free-text grammar treating verb-second clauses and additional
complementation structures (notably extraposed clausal complements) with about one year
of additional grammar development and experiment. These increments in the grammar could
casily double the number of rules. However this would probably not pose a problem for the

parsing and estimation software.
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Appendix 1: Evaluation of Individual Frames

all guesses / correct guesses

iter.|| VPA.n |[VPA.na |VPA.nd|VPA.nr|VPA.np|VPA nap
possible 117 164 16 19 62 12
random 213/ 96(107/ 94|35/ 6|34/ 19/ 0/ 0| 1/ 0
unlex  2|152/ 86|161/131({19/ 7(31/ 19| 2/ 0| 0/ 0
unlex 60| 53/ 46| 89/ 79| 7/ 5|11/ 8|92/ 40|63/ 7
unlex 100| 53 / 46| 83/ 74| 7/ 5|11/ 8|90/ 40|65/ 8
lex-00  1||196/ 99129/ 117(28/ 7(34/ 19| 0/ 0| 2/ 0
lex-00 last||173/ 93|135/122(24/ 7(31/ 18|15/ 10| 3/ 1
lex-02  2|[139/ 88|147/129(19/ 7|27/ 17|13/ 9| 0/ 0
lex-02 last||136/ 87|148/132(18/ 7|27/ 17|19/ 12| 0/ 0
lex-60 1|/ 54 / 50| 68/ 66(25/ 7[11/ 9|85/ 38|51/ 7
lex-60 last|| 59 / 55| 79/ 76|20/ 8| 9/ 8|87/ 44|54/ 7

all guesses / correct guesses

iter.|| copula | VPP.n | others total
possible 90 64 40 584
random 69 / 60|67/ 51| 34/ 10|560/ 336
unlex 2|96 / 77|68/ 52| 32/ 12|561/ 384
unlex  60(102/ 78|47/  8|116/ 23|580/ 294
unlex 100|102/ 78|26/ 21(124/ 25|560/ 305
lex-00 1|75/ 65|72/ 54| 25/ 9|561/ 370
lex-00 last|| 79 / 67|72/ 54| 31/ 10|563/ 382
lex-02  2||107/ 78|60/ 48| 52/ 18|564/ 394
lex-02 last||106/ 78|60/ 47| 50/ 17|564/ 397
lex-60  1|(115/ 78|17/ 15|140/ 25||566/ 295
lex-60 last||114/ 78|20/ 18|124/ 24|566/ 318

Table 4.4: Absolute numbers of guesses and corrects for individual frames

In Table 4.4, we compare the absolute number of parser guesses and corrects of individual
frames for our previously described training regime and the different resulting models. The
table contains guesses and corrects of all frames that occur more than ten times in the an-
notator’s markup. Combined measures for the set of frames that occur less than ten times in
the markup are given in the column headed by others. The annotator’s markup is indicated in
the row labelled possible. The row labelled random indicates the figures for the unlexicalized
model resulting from randomly initialized rule frequencies. We chose several key models of
unlexicalized and lexicalized training that are indicated in the first column by iteration num-
bers. For unlexicalized training, we chose the the best model in iteration 2, the worst model

in iteration 60, and the last model, which is already beyond the mathematical overtraining
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Figure 4.10: Precision of individual frames in unlexicalized training
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Figure 4.11: Recall of individual frames in unlexicalized training

threshal. For lexicalized training from a grammar with random frequency rules, we show the
figures for the worst model immediately after lexicalization (lex-00), and the last model. In
the best lexicalized training, we focus on the second and the last model (here, the start before
lexicalization is unlex 2). The figures for the lexicalized training stuck in a bad state (lex-60)

are again from immediately after lexicalization and from the last iteration.

In addition to the absolute figures of correct and incorrect guesses, we plot overall precision
and recall results for individual frames in the course of unlexicalized training (Figures 4.10
and 4.11) and for those in lexicalized training starting from the best unlexicalized model
(Figures 4.12 and 4.13).

unlex. The severe loss in precision following the second iteration during lexicalized training
described in section 4.6.3 is due to a loss in decision mass for intransitive and transitive frames.
Of 131 correctly recognized transitive frames in the second iteration more than 40 are lost in

further training. Of 86 correct guesses of intransitive frames 40 are lost.

The loss with respect to intransitive frames is surprising given that the initial grammar
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is biased towards intransitive frames as witnessed by the figures for the random model (more
than 38% of the total guesses are guesses of intransitive frames). Although the revision of
intransitive guesses is desirable, it oversteps the mark of 117 in the annotator’s handicap by
far (213 guesses in random, 152 guesses in unlex 2, and 53 guesses in unlex 60 and 100). In the
first iterations, intransitive guesses are changed to transitive and copula guesses. Concerning
revisions to copula, we found a systematic error. Past participle forms of verbs are always
associated with a tag list that in addition to the past participle tag VVPP also contains the
tags ADJ.Pred for predicative and ADJ.Adv for adverbial adjectives. Given the ambiguous tag
list, verbs forming their perfect tense forms with the auxiliary ’sein’ (’to be’) allow for an
analysis of 'sein’ as a perfect tense auxiliary and also as a copula verb requiring a predicative.
Similarly, the revision of passive frames to copula constructions in later iterations is to be
explained by reanalysis of the passive auxiliary 'werden’ as a copula verb (cf. the decrease in

guesses of VPP.n in unlex 60 and 100).

Apart from the shift to copula constructions, the dislike for intransitive and transitive is
balanced by the tendency to choose frames that contain a PP-argument. The almost entire
initial lack of PP-frame guesses in unlexicalized models is revised to more than 90 choices
of VPA.np, more than 60 choices of VPA.nap and several low frequency PP-frames in others.
The considerable increase in PP-frame choices contrasts with rather poor precision and recall
results, less than 45% for VPA . np, less than 15% for VPA.nap, and about 20% for the PP-frames
contained in other.

Let us add a remark on the interpretation of the precision and recall plots in figures
4.10 and 4.11. Although the majority of plots for individual frames shows a gain in precision
during unlexicalized training, we noted the dramatic loss in overall precision illustrated back in
Figure 4.8. As already mentioned in the above discussion of absolute numbers, this is due shift
of the parser’s decision mass as illustrated by the decrease in recall of intransitive, transitive,

and passive frames in Figure 4.11.

lex-00/02/60. Apart from very few (mostly insignificant) exceptions, our observation con-
cerning iterative inside-outside estimation succeeding lexicalization is confirmed by the eval-
uation of individual frames. The overall frame evaluation showed small but reliable precision
and recall gains for frame recognition. Irrespective of different starting points, iterative lexi-
calized estimation similarly leads to either slightly increased or steady results for each of the
individual frames with respect to absolute figures of correct guesses. The only notable negative
cxception is the loss of six correct choices of intransitive frames in lex-00 accompanied by a
correction from 97 to 80 wrong guesses of intransitives. The most significant gain in early lex-
icalization (lex-00 and lex-02) is achieved for VPA.np frames. In late lexicalization, i.e. lex-60,
lexicalized training mainly rectifies the loss of correct guesses of intransitive frames and of

passive frames with a single nominative argument.
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Figure 4.13: Recall of individual frames in training the best lexicalized

model

The plots for precision in Figure 4.12 and recall in Figure 4.13 of individual frames in lexi-
calized training lex-02 show main gains within the first four iterations. Later shifts in precision
and recall up to iteration 15 arc equalled out. In the above discussion of unlexicalized training,
we mentioned VPP.n and the copula construction as an instance of a mutually dependent pair
of frames. In the plots, this can be reidentified by precision/recall gains in the former and

respective losses in the latter.
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Appendix 2: Random Models

In order to give an impression of possible gains through grammar training, we did an evaluation
of 50 different grammars with randomly initialized rule frequencies.

The following plots present precision and recall measures on noun chunk evaluation (Fig-
ure 4.14), frame cvaluation (Figure 4.15). The precision of noun chunk recognition is in the
range of 58% and 77%, frame rccognition varies between 48% and 62%. We abstained from
including a plot for the variability of non-PP frame recognition in different random models.
It ranges from 52% to 66%.
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Figure 4.14: Precision/recall measures on noun chunks of 50 different

unlexicalized random models
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Figure 4.15: Precision/recall measures on VP frames of 50 different
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Appendix 3: Different Starting Points

In order to validate our results, we chose two grammars from the 50 different rule frequency
randomizations as starting points for unlexicalized and lexicalized training. Random model
20 delivers the worst precision and recall results for frames among all random states. Random
model 25 yields almost identical precision and recall ratios for both noun chunks and sub-
categorization frames, i.c., in the context of all random models, intermediate results for noun
chunks and fair results for frames. The initial grammar used in our main experiment (random

grammar () is well above average in precision and recall for both evaluations.
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Figure 4.16: Precision/recall measures for NC with case (random 20)
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Figure 4.17: Precision/recall measures for NC with case (random 25)

Starting from different random grammars, precision and recall measures in noun chunk
evaluation for unlexicalized training lead to similar results. Irrespective of initialization, un-
lexicalized training yields between 83% and 84% in precision and between 80% and 81% in
recall of noun chunk recognition. A minor difference is found in the number of iterations within
which the best results will be reached. Starting from a random grammar with poor precision
and recall requires few more iterations of unlexicalized training in order to reach maximally

possible results (cf. Figure 4.16).
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For lexicalized training with different bases for lexicalization, the comparison of different
starting points shows a much more diverse picture (in addition to Figure 4.18 and 4.19 sce also
Figure 4.8 in section 4.6.3). In contrast to the models random 0 and random 20, immediate
lexicalization of the random model does not produce poor results for noun chunk recognition.
Furthermore, lexicalized training based on an early model of unlexicalized training may have
hardly any positive effect at all as witnessed by the plots for lex 05 in Figure 4.19. Rather,
the precision results for lex 20 in Figure 4.19 suggest the need for a more careful selection of
the base for lexicalization and further lexicalized inside-outside estimation. However, since our
prime interest is in good results for frame recognition, i.e. good overall results for the entire

model, we have to compromise here.
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Figure 4.18: Precision measures for all verb frames (random 20)

0.68 o precision lex 05 —— -
precision unlex -
ion lex 00 -

precision
precision lex 20 g

precision'recd|

o 5 10 25 30 35

15 20
iteration #

Figure 4.19: Precision measures for all verb frames (random 25)

Again, the results concerning frame recognition in iterative unlexicalized reestimation from
different starting points corroborate our observations presented in section 4.6. Precision gains
in initial iterations are followed by losses more or less severe depending on both precision
in the initial random state and precision in the best unlexicalized model. In contrast to the

observations for precision results in NC evaluation, the precision of frame recognition found for
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random models correlates with precision maxima. Low precision of 48% in random 20 restricts
the maximum to less than 62% within five iterations of unlexicalized training, high precision
in random 0 allows for a maximum of more than 68% within only two itecrations. Irrespective
of the particular starting point, 20 iterations of unlexicalized training show a uniform decrease
to about 57% precision after 20 iterations.

The plots for lexicalized training with lexicalization of different base models also support
our findings in section 4.6. In general, it is a good strategy to start with lexicalized training from
a well-trained unlexicalized model in order to obtain best precision results. A notable exception
is lex 00 in random 25, where lexicalization of the random model yields similar precision for
frame recognition as lexicalized training with the unlexicalized model from iteration 5 as its

base.
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Abstract

We present a probabilistic clustering method defining the clustering task as induction
of hidden parameters of a probability model on dyadic linguistic data. Induction of
unobserved class parameters is accomplished as statistical inference in the framework
of maximum-likelihood estimation from incomplete data via the EM algorithm. We
present illustrative examples of induced clusters from large sets of English and Ger-
man data. The clustering models are evalutated on a pseudo-disambiguation task
testing the power of the models to generalize over unseen data. We present two
applications of the clustering models to natural language processing applications.
The first task concerns the induction of semantic labels for subcategorization slots
of English and German lexical verbs. Based on induced clusters of subcategoriza-
tion frames and their nominal fillers, induction of labels of the respective slots is
accomplished by a further application of EM. We report experiments with large sets
of German and English intransitive and transitive verbs and outline a linguistic in-
terpretation of the learned representations. A second application concerns the use
of clustering models on English verb-noun combinations to sclect among candidate
English translations of German nouns. We present an evaluation of clustering mod-
cls on a pscudo-disambiguation task for noun-ambiguity. Furthermore, we evaluate
the models on a gold standard extracted from a bilingual corpus. The performace of
cluster-based target-language disambiguation is reported for models of various sizes

and compared to simpler statistical disambiguation methods.
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5.1 Introduction

Probabilistic clustering methods for natural language applications mainly focus on the follow-
ing two tasks: (i) induction of smooth probability models on language data, (ii) automatic
discovery of class-structure in natural language. The first task uses clustering as a solution to
the problem of sparse data. In such applications the class-structure itself is not of interest,
rather data clusters are consulted as general back-up sources of information when information
about specific events is sparse or missing in the input. In contrast to this, for the second task
we are interested in the structure of the induced clusters as a statistical semantics underly-
ing the data in question. In the following we will present two applications of a probabilistic

clustering model cach of which stresses one of these tasks.

Clustering is conceptualized in our approach as induction of a class-based probability model
on dyadic linguistic data—a sample of verb-noun pairs extracted from the maximal probabil-
ity parses of large unannotated English and German data. Classes are introduced as hidden
parameters of the probability model on verb-noun pairs. Induction of these unobserved pa-
rameters is accomplished in the framework of maximum likelihood estimation from incomplete
data via the EM algorithm.

We present some illustrative examples of induced clusters and report the results of a harder
cvaluation of the models on a pseudo-disambiguation task testing the power of the models to

generalize over unseen data.

The first application we will present is the induction of semantically annotated lexica based
on induced clusters. In this application the stress is clearly on automatic discovery of class-
structure. Based on clusters of subcategorization frames of verbs and their nominal fillers,
induction of labels for the respective slots of subcat frames is accomplished by a further appli-
cation of EM. We report results on experiments with observations derived from large English
and German corpora. Furthermore, we outline an interpretation of the learned representations

as theoretical-linguistic decompositional lexical entries.

The second application concentrates on the smoothing aspect of the clustering models. Here
class-based probability models on English verb-noun combinations are used to disambiguate
nouns senses in the context of ambiguous translations of nouns from German to English.
We present an evaluation of models on a pseudo-disambiguation task for noun-ambiguity.
In addition to this cheap evaluation, we present an evaluation on a gold standard which is
extracted from a bilingual corpus. We report the performance of cluster-based target-language
disambiguation for models of various sizes and compared to simpler methods such as plain

maximum likelihood estimation on the training corpus.
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5.2 EM-Based Clustering

In our clustering approach, classes are derived directly from distributional data—a sample
of pairs of verbs and nouns, gathered by parsing an unannotated corpus and extracting the
fillers of grammatical relations. Semantic classes corresponding to such pairs are viewed as
hidden variables or unobserved data in the context of maximum likelihood estimation from
incomplete data via the EM algorithm. This approach allows us to work in a mathematically
well-defined framework of statistical inference, i.e., standard monotonicity and convergence
results for the EM algorithm extend to our method.

The basic ideas of our EM-based clustering approach were presented in Rooth (Ms) (sce
also Rooth (1998)). An important property of our clustering approach is the fact that it is
a “soft” clustering method, defining class membership as a conditional probability distribu-
tion over verbs and nouns. In contrast, in hard (Boolean) clustering methods such as that of
Brown et al. (1992), every word belongs to exactly one class, which because of homophony
is unrealistic. The foundation of our clustering model upon a probability model furthermore
contrasts with the merely heuristic and empirical justification of similarity-based approaches
to clustering (Dagan et al. 1998). The probability model we use can be found carlier in Pereira
et al. (1993). However, in contrast to this approach, our statistical inference method for clus-
tering is formalized clearly as an EM-algorithm. Approaches to probabilistic clustering similar
to ours were presented recently in Saul and Pereira (1997) and Hofmann and Puzicha (1998).
There also EM-algorithms for similar probability models have been derived, but applied only
to simpler tasks not involving a combination of EM-based clustering models as in our lexicon

induction experiment.

We seek to derive a joint distribution of verb-noun pairs from a large sample of pairs of
verbs v € V and nouns n € N. The key idea is to view v and n as conditioned on a hidden
class ¢ € C, where the classes are given no prior interpretation. The semantically smoothed

probability of a pair (v,n) is defined to be:
p(v,n) =Y ple,v,n) = Y p(c)p(v|e)p(n|e)
ceC ceC

The joint distribution p(c,v,n) is defined by p(c,v,n) = p(c)p(v|c)p(n|c). Note that by con-

struction, conditioning of v and n on each other is solely made through the classes c.

In the framework of the EM algorithm (Dempster et al. 1977; McLachlan and Krishnan
1997), we can formalize clustering as an estimation problem for a latent class (LC) model as

follows. We are given:

e a sample space Y of observed, incomplete data, corresponding to pairs from V x N,

e asample space X of unobserved, complete data, corresponding to triples from CxV x N,
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0.0056 cryasis|e e @ & @ «e o . e« s s . .

Figure 5.1: English class 5: communicative action

e aset X(y) ={z € X | z=(c,y), c € C} of complete data related to the observation
y’

e a complete-data specification pg(z), corrcspondirégciw &h@"j%ilg: V,rﬁbéwi)t,y p(c,v,n) over
C x V x N, with parameter-vector 6 = (6,6, "
e an incomplete data specification pg(y) which is related to the complete-data specification

as the marginal probability pg(y) = Zx(w po(z).

The EM algorithm is directed at finding a value 6 of 6 that maximizes the incomplete-data

log-likelihood function L as a function of 8 for a given sample Y, i.c.,
6 = arg max L(#) where L(0) = lang(y).
6
y
As prescribed by the EM algorithm, the parameters of L() are estimated indirectly by

proceeding iteratively in terms of complete-data estimation for the auxiliary function Q(6; (%)),

which is the conditional expectation of the complete-data log-likelihood Inpg(z) given the



AIMS VOL.4 NO.3 1998 101

observed data y and the current fit of the parameter values () (E-step). This auxiliary
function is iteratively maximized as a function of 6 (M-step), where each iteration is defined

by the map
6+ = M(8™) = arg max Q(6; 61))
6

Note that our application is an instance of the EM-algorithm for context-free models (Baum
et al. 1970; Baker 1979), from which the following particularly simple reestimation formulae
can be derived. Let z = (¢, y) for fixed ¢ and y, and f(y) be the frequency of y in the training
sample. Then

_ Zyeqopen f(W)pe(ly)
M) = =5 i palaly)

_ Zy&VX{n) f(y)pg(:c\y)
M (Boc) >, [(@)pelely)
M6, = Z,,f(y)pe(z\y).

I

Intuitively, the conditional expectation of the number of times a particular v, n, or ¢ choice is
made during the derivation is prorated by the conditionally expected total number of times a
choice of the same kind is made. As shown by Baum et al. (1970), every such maximization step
increases the log-likelihood function L, and a sequence of re-estimates eventually converges to

a (local) maximum of L.

5.3 Clustering Examples

In the following, we will present some examples of induced clusters. In one experiment the input
to the clustering algorithm was a training corpus of 1,178,698 tokens (608,850 types) of English
verb-noun pairs participating in the grammatical relations of intransitive and transitive verbs
and their subject and object fillers. The data were gathered from the maximal-probability
parses the head-lexicalized probabilistic context-free grammar of Carroll and Rooth (1998)

gave for the British National Corpus (117 million words).

Fig. 5.1 shows an induced semantic class out of a model with 35 classes. At the top are
listed the 30 most probable nouns in the p(n|5) distribution and their probabilities, and at
left are the 30 most probable verbs in the p(v|5) distribution where 5 is the class index. Those
verb-noun pairs which were seen in the training data appear with a dot in the class matrix.
Verbs with suffix .as : s indicate the subject slot of an active intransitive. Similarily .aso : s
denotes the subject slot of an active transitive, and .aso : o denotes the object slot of an
active transitive. Thus v in the above discussion actually consists of a combination of a verb

with a subcat frame slot as : s, aso : s, or aso : o. Induced classes often have a basis in
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0.0058 stand.aso:0 . . . . .

Figure 5.2: English class 17: scalar change

lexical semantics; class 5 can be interpreted as clustering agents, denoted by proper names,
“man”, and “woman”, together with verbs denoting communicative action. Fig. 5.2 shows a
cluster involving verbs of scalar change and things which can move along scales. Fig. 5.9 can

be interpreted as involving different dispositions and modes of their execution.

In another experiment, we extracted 418,290 tokens (318,086 types) of pairs of German
verbs or adjectives and grammatically related nouns from maximal-probability parses; the
corpus parsed was a 4.1 million word corpus of 450,000 German subordinate clauses extracted
from a 200 million word corpus of German newspapers. The lexicalized statistical model for
German is described in Beil et al. (1998).

The figures 5.8 and 5.3 show two classes out of a model with 35 classes. On the left and at
the top are listed the 30 highest probable verb/adjective predicates and nouns appearing as
fillers of the verb/adjective slots, ordered according to their probability given the class. Verbal
predicates are annotated with subcategorization slots, ec.g., liegen-VPA.np:NP.Nom denotes
the nominative noun-phrase filler of the subject-slot of an active verb liegen subcategorizing

for a nominative and a prepositional phrase. tragen- VPA.na:NP.Akk is the accusative noun-
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Figure 5.3:

German class 26: scalar change
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phrase filler of the object slot of the transitive verb tragen, steigen-VPA.n:NP.Nom denotes
the nominative filler of the subject slot of the intransitive verb steigen. Clearly, due to the
smaller size of the German input data compared to the English data, German classes are less

dense than the English counterparts.

Fig. 5.8 shows a class which can be interpreted as govermental/public authority, involving
nouns such as police force and public prosecutor’s office. Fig. 5.3 shows a cluster involving

scalar motion verbs and things which can move along scales.

5.4 Evaluation of Clustering Models

5.4.1 Pseudo-Disambiguation

We evaluated our clustering models on a pseudo-disambiguation task similar to that performed
in Pereira et al. (1993), but differing in detail. The task is to judge which of two verbs v and
v’ is more likely to take a given noun n as its argument where the pair (v,n) has been cut out
of the original corpus and the pair (v/,n) is constructed by pairing n with a randomly chosen
verb v’ such that the combination (v/,n) is completely unseen. Thus this test evaluates how

well the models generalize over unseen verbs.

The data for this test were built as follows. We constructed an evaluation corpus of (v, n,v")
triples from a test corpus of 3,000 types of (v,n) pairs which were randomly cut out of the
original corpus of 1,280,712 tokens, leaving a training corpus of 1,178,698 tokens. Each noun
n in the test corpus was combined with a verb v’ which was randomly chosen according to
its frequency such that the pair (v',n) did appear neither in the training nor in the test
corpus. However, the elements v, v’, and n were required to be part of the training corpus.
Furthermore, we restricted the verbs and nouns in the evaluation corpus to the ones which
occurred at least 30 times and at most 3,000 times with some verb-functor v in the training
corpus. The resulting 1,337 evaluation triples were used to evaluate a sequence of clustering

models trained from the training corpus.

The clustering models we evaluated were parameterized in starting values of the training
algorithm, in the number of classes of the model, and in the number of iteration steps, resulting
in a sequence of 3 X 10 X 6 models. Starting from a lower bound of 50 % for randomly
initialized models, accuracy was calculated as the number of times the model decided for
p(n|v) > p(n|v') out of all choices made. Fig. 5.4 shows the evaluation results for models
trained with 50 iterations, averaged over starting values, and plotted against class cardinality.
Different starting values had an effect of ¥ 2 % on the performance of the test. We obtained a
value of about 80 % accuracy for models between 25 and 100 classes. Models with more than

100 classes show a small but stable overfitting cffect.
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Figure 5.4: Evaluation of English models on pscudo-disambiguation task

The German models were evaluated in a similar way. An evaluation corpus of 886 (v,n, ')
triples was extracted from the original corpus of 428,446 verb/adjective-noun tokens, leaving
418,290 tokens for training a sequence of clustering models. Again, the models were param-
cterized in starting values, number of classes and iteration steps, resulting in a sequence of
3x 11 x 20 models. Fig. 5.5 shows the cvaluation results for models trained with 100 iterations,
averaged over starting values, and plotted against class cardinality. We obtained an accuracy
of over 75 % for models up to 35 classes. Different starting values had an effect of * 2 % on
the evaluation results. For models with more than 50 classes again a small overfitting effect

can be seen.

generalization power over ambiguous verbs ——
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L
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Figure 5.5: Evaluation of German models on pscudo-disambiguation task

5.4.2 Smoothing Power

A second experiment addressed the smoothing power of the model by counting the number of

(v,n) pairs in the set V' x N of all possible combinations of verbs and nouns which received
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Figure 5.6: Evaluation of English models on smoothing task

a positive joint probability by the model. The V' x N-space for the above clustering models
included about 425 million (v,n) combinations; we approximated the smoothing size of a
model by randomly sampling 1,000 pairs from V X N and returning the percentage of positively
assigned pairs in the random sample. Fig. 5.6 plots the smoothing results for the above models
against the number of classes. Starting values had an influence of * 1 % on performance. Given
the proportion of the number of types in the training corpus to the V' x N-space, without
clustering we have a smoothing power of 0.14 % whereas for example a model with 50 classes

and 50 iterations has a smoothing power of about 93 %.

Corresponding to the maximum likelihood paradigm, the number of training iterations
had a decreasing effect on the smoothing performance whereas the accuracy of the pseudo-
disambiguation was increasing in the number of iterations. We found a number of 50 iterations

to be a good compromise in this trade-off.

For German models we observed a baseline smoothing power of 0.012 % which is the
relation of the number of types in the German training corpus to the 2.5 billion combinations
in the V' x N-space for the German experiments. Despite of the fact that this baseline is 10
times smaller than the baseline for the English models, we have a smoothing power of about
32 % for models with 25 classes, which were best in terms of the pseudo-disambiguation task.
This is shown in Fig. 5.7. The best compromise in terms of iterations was a number of 100

iterations for the German experiments.

5.5 Application to Lexicon Induction Based on Latent Classes

5.5.1 Motivation

An important challenge in computational linguistics concerns the construction of large-scale

computational lexicons for the numerous natural languages where very large samples of lan-
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Figure 5.7: Evaluation of German models on smoothing task

guage use arc now available. Resnik (1993) initiated research into the automatic acquisition of
semantic selectional restrictions. Ribas (1994) presented an approach which takes into account
the syntactic position of the clements whose semantic relation is to be acquired. However, those
and most of the following approaches require as a prerequisite a fixed taxonomy of seman-
tic relations. This is a problem because (i) entailment hierarchies are presently available for
few languages, and (ii) we regard it as an open question whether and to what degree exist-
ing designs for lexical hierarchies are appropriate for representing lexical meaning. Both of
these considerations suggest the relevance of inductive and experimental approaches to the

construction of lexicons with semantic information.

This section presents a method for automatic induction of semantically annotated subcat-
egorization frames from unannotated corpora. We use a statistical subcat-induction system
which estimates probability distributions and corpus frequencies for pairs of a head and a
subcat frame (Carroll and Rooth 1998). The statistical parser can also collect frequencies for
the nominal fillers of slots in a subcat frame. The induction of labels for slots in a frame is
based upon estimation of a probability distribution over tuples consisting of a class label, a
selecting head, a grammatical relation, and a filler head. The class label is treated as hidden

data in the EM-framework for statistical estimation.

5.5.2 Probabilistic Labeling with Latent Classes using EM-estimation

To induce latent classes for the subject slot of a fixed intransitive verb the following statistical
inference step was performed. Given a latent class model pre(-) for verb-noun pairs, and a
sample nq,...,ny of subjects for a fixed intransitive verb, we calculate the probability of an

arbitrary subject n € N by:

= plen) =) ple)pro(nfo).

ceC ceC

o(
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Figure 5.8: German class 14: governmental/public authority
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The estimation of the parameter-vector 6 = (6.|c € C) can be formalized in the EM framework
by viewing p(n) or p(c,n) as a function of 6 for fixed prc(.). The re-estimation formulae
resulting from the incomplete data estimation for these probability functions have the following
form (f(n) is the frequency of n in the sample of subjects of the fixed verb):

2nen S (n)po(ein)
Yonen f(n)

A similar EM induction process can be applied also to pairs of nouns, thus enabling induction

M(HC) =

of latent semantic annotations for transitive verb frames. Given a LC model prc(-) for verb-
noun pairs, and a sample (n1,n9)1,...,(n1,n2)y of noun arguments (n; subjects, and ng
direct objects) for a fixed transitive verb, we calculate the probability of its noun argument

pairs by:

p(n1,n2)

> pler, e2,m1,m9)

c1,c2€C

> pler,e2)pre(mler)pro(nales)
c1,e26C

Again, estimation of the parameter-vector 6 = (fc,c,|c1,¢c2 € C) can be formalized in an EM
framework by viewing p(ni,ng) or p(ci,ce,n1,n9) as a function of 6 for fixed prc(.). The re-
estimation formulae resulting from this incomplete data estimation problem have the following
simple form (f(n1,n9) is the frequency of (n1,n2) in the sample of noun argument pairs of
the fixed verb):

S s men F (s n2)po(es, ealni, na)

> ongmaen f(n1;n2)

Note that the class distributions p(c) and p(cy,cg) for intransitive and transitive models can

M(aclcz) =

also be computed for verbs unseen in the LC model.

5.5.3 Lexicon Induction Experiments

In a first experiment with English data we used a model with 35 classes. From maximal prob-
ability parses for the British National Corpus derived with the statistical parser of Carroll and
Rooth (1998), we extracted frequency tables for intransitive verb/subject pairs and transitive
verb/subject /object triples. The 500 most frequent verbs were selected for slot labeling. Fig.
5.10 shows two verbs v for which the most probable class label is 5, a class which we earlier
described as communicative action, together with the estimated frequencies of f(n)pg(c|n) for

those ten nouns n for which this estimated frequency is highest.
Fig. 5.11 shows corresponding data for an intransitive scalar motion sense of increase.

Fig. 5.12 shows the intransitive verbs which take 17 as the most probable label. Intuitively,

the verbs are semantically coherent. When compared to Levin (1993)’s 48 top-level verb classes,
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0.0072 create.asois| e e o o o @ @ e s e s e . e s » e e o008
0.0070 affect.aso:o| @ @ e a0 0 00 20 e * s 0 e 000 0 .
0.0069 imply.aso:0| e e e . . e e e o e . . o e o« .
0.0068 achieve.aso:o|( e e @ e e s oo . e . . . . . e e« s
0.0066 findaso:o|® e @« @« e e » e 0 s 0 s 0 0 000 e e 000 e s e 0
0.0062 describe.asoio| e e o @ @ o @ e s .« . e o e 00 000 0

Figure 5.9: English class 8: dispositions

we found an agreement of our classification with her class of “verbs of changes of state” except
for the last three verbs in the list in Fig. 5.12 which is sorted by probability of the class label.

Fig. 5.13 shows the most probable pair of classes for increase as a transitive verb, to-
gether with estimated frequencies for the head filler pair. Note that the object label 17 is the
class found with intransitive scalar motion verbs; this correspondence is exploited in the next

section.

Further experiments were done with two German models with 35 and 50 classes respec-
tively. The data for these experiments were extracted from the maximal probability parses of
a 4.1 million word corpus of German subordinate clauses, parsed with the lexicalized prob-
abilistic grammar of Beil et al. (1998). Fig. 5.14 shows the subjects of the intransitive verb
bekanntgeben (make public). The nouns are classified with probability 0.999999 to class 14,
which was described in Sect. 5.3 as class of govermental/public-authority. The numbers in the

column show the estimated frequencies of the subject fillers.

Fig. 5.15 shows the subjects of the intransitive verb steigen (rise) which belong with
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blush 6.982975 snarl 5 0.962094
constance 3 mandeville 2
christina 3 jinkwa 2

willie 2.99737 ||man 1.99859
ronni 2 scott 1.99761
claudia 2 omalley  1.99755
gabriel 2 shamlou 1
maggie 2 angalo 1
bathsheba 2 corbett 1

sarah 2 southgate 1

girl 1.9977 |lace 1

Figure 5.10: Lexicon entries: blush, snarl

increase 17 0.923698

number 134.147 |proportion 3.8699
demand 8.7322 |size 22.8108
pressure 8.5844 |rate 0.9593
temperature 25.9691 |level 0.7651
cost 3.9431 |price 17.9996

Figure 5.11: Scalar motion increase.

probability 0.67273 to class 26 which was interpreted in Sect. 5.3 as a class of gradation/scalar

change.

Similar to the English experiments we observe semantic uniformity in the verbs of scalar
change. Fig. 5.16 shows 10 intransitive verbs which take class 14 of a 50-classes model (corre-
sponding to class 26 of the 35-class model) as the most probable class to label their respective
subject slots. On the basis the most probable class labels these verbs can be summarized as
scalar motion verbs. When compared to linguistic classifications of verbs given by Schuhmacher
(1986), we found an agreement of our classification with the class of “cinfache Anderungsver-
ben” (simple verbs of change) except for the verbs anwachsen (increase) and stagnieren (stag-

nate) which were not classified there at all.

An example of the two most probable subject-object class pairs of a transitive verb, senken
(lower) is shown in Fig. 5.17. Class 14 has been introduced before as govermental/public

authority and class 26 as gradation/scalar change.

Fig. 5.18 shows the transitive verb dauern (last/go on) sclecting the class-pair (0,10)
with probability 0.957095 as semantic label for its subject and object slots. Class 0 can be

interpreted as project/action-class and class 10 as class of time.
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0.977992 decrease
0.948099 double
0.923698 increase
0.908378 decline

0.560727 drop
0.476524 grow
0.42842 vary
0.365586 improve

0.877338 rise 0.365374 climb
0.876083 soar 0.292716 flow
0.803479 fall 0.280183 cut
0.672409 slow 0.238182 mount
0.583314 diminish

Figure 5.12: Scalar motion verbs

increase (8,17) 0.3097650
development - pressure 2.3055
fat - risk 2.11807
communication - awareness 2.04227

supplementation - concentration 1.98918
increase - number 1.80559

Figure 5.13: Transitive increase with estimated frequencies for filler pairs.

5.5.4 Linguistic Interpretation of Latent Class Labels

In some linguistic accounts, multi-place verbs are decomposed into representations in-
volving (at least) one predicate or relation per argument. For instance, the transitive
causative/inchoative verb increase, is composed of an actor/causative verb combining with
a one-place predicate in the structure on the left in Fig. 5.19. Linguistically, such representa-
tions are motivated by argument alternations (diathesis), case linking and deep word order,
language acquistion, scope ambiguity, by the desire to represent aspects of lexical meaning, and
by the fact that in some languages, the postulated decomposed representations are overt, with
cach primitive predicate corresponding to a morpheme. For references and recent discussion
of this kind of theory see Hale and Keyser (1993) and Kural (1996).

We will sketch an understanding of the lexical representations induced by latent-class la-
beling in terms of the linguistic theories mentioned above, aiming at an interpretation which
combines computational learnability, linguistic motivation, and denotational-semantic ade-
quacy. The basic idea is that latent classes are computational models of the atomic relation
symbols occurring in lexical-semantic representations. As a first implementation, consider re-
placing the relation symbols in the first tree in Fig. 5.19 with relation symbols derived from
the latent class labeling. In the second tree in Fig 5.19, R;7 and Rg are relation symbols with
indices derived from the labeling procedure of Sect. 5.5. Such representations can be semanti-

cally interpreted in standard ways, for instance by interpreting relation symbols as denoting
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0.741467 ansteigen (go up)
0.720221 steigen (rise)
0.693922 absinken (sink)
0.656021 sinken (go down)
bekanntgeben 14 0.999999|(make public) 0.438486 schrumpfen |(shrink)
Sprecher 4 (spokesman) 0.375039 zuriickgehen |(decrease)
Polizei 3 (police) 0.316081 anwachsen  |(increase)
BundesAmt 3 (Federal Agency) 0.215156 stagnieren (stagnate)
BiirgerMeister 2 (mayor) 0.160317 wachsen (grow)
VorstandsChef 2 (Chairman of the board) 0.154633 hinzukommen |(be added)
GeschiftsLeitung 2 (manager)
Vorstand 2 (board of management) Figure 5.16: German intransitive scalar change verbs
unternehmen 1.99996 |(company)
WetterAmt 1 (meteorological office) senken (14, 26) 0.450352| (lower)
VolksBank 1 (cooperative bank) BundesBank - LeitZins 5.81457 |(Federal bank - base rate)
BundesBank - Zins 2.97838 |(Federal bank - interest)
. . . . superMarkt - Preis 1 (super market - price)
Figure 5.14: Intransitive lexicon entry: bekannitgeben (make public) .
SommerGeschéft - Verlust 1 (summer business - loss)
BundesBank - DiskontSatz 0.99999 |(Federal bank - minimum lending rate)
senken (14,14) 0.147857
BundesBank - Lombardsatz 0.999973| (Federal bank - rate on loanes on security)
StrafAndrohung - AbtreibungsQuote 0.96842 |(threat of punishment - abortion rate)
StrafAndrohung - AbtreibungsZahl 0.96842 |(threat of punishment - number of abortions)
FachHandel - LagerKost 0.878333| (stores - storage charges)
Harmonisierung - sozialNiveau 0.764319| (harmonization - social level)
steigen Q67273 (rise) Figure 5.17: Transitive lexicon entries for senken (lower)
Zahl 23.333 |(number)
Preis 5.895 |(price) i R
ArbeitsLosigkeit  10.8788| (unemployment) relations between events and individuals.
Lohn 9.72965|(wage) Such representations are semantically inadequate for reasons given in philosophical cri-
NachFrage 6.83619|(demand) tiques of decomposed linguistic representations; see Fodor (1998) for recent discussion. A
Zins 6.80322 (interest) lexicon estimated in the above way has as many primitive relations as there are latent classes.
Auflage 5.22654|(print run) . . . .

. . We guess there should be a few hundred classes in an approximately complete lexicon (which
Beitrag 4.22577|(contribution) ) ¢ . ¢ mill . ,
Produktion 4.21641| (output) would have to be estimated from a corpus of hundreds of millions of words or more). Fodor’s
GrundstuecksPreis 4 (price of a piece of land) arguments, which are based on the very limited degree of genuine interdefinability of lexical

items and on Putnam’s arguments for contextual determination of lexical meaning, indicate
. ”, . ) . that the number of basic concepts has the order of magnitude of the lexicon itself. More
Figure 5.15: Intransitive lexicon entry: steigen (rise) .
concretely, a lexicon constructed along the above principles would identify verbs which are
labelled with the same latent classes; for instance it might identify the representations of grab

and touch.

For these reasons, a semantically adequate lexicon must include additional relational con-
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dauern (0,10) 0.957095| (last /go on)
Entwirrung - Zeit 2 (disentanglement - time)
BuergerFrageStunde - Stunde 2 (question time - hour)
Prozess - Jahr 2 (trail - year)
schreckensZeit - Jahr 1 (scaring time - year)
ratenZahlung - Jahr 1 (buy in installments - year)

Figure 5.18: Transitive lexicon entry for dauern (last/to go on)

VP VP VP VP
NP V1 NP V1 NP \2 NP \Y
|
A R,; A incregs
VPV VP v VP v
\ \ \
A ACT R, R,
NP V NP V NPV
| | |
increase R, R,, A incregs

Figure 5.19: First tree: linguistic lexical entry for transitive verb increase. Second: correspond-
ing lexical entry with induced classes as relational constants. Third: indexed open class root
added as conjunct in transitive scalar motion increase. Fourth: induced entry for related in-
transitive increase.
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stants. We meet this requirement in a simple way, by including as a conjunct a unique constant
derived from the open-class root, as in the third tree in Fig. 5.19. We introduce indexing of the
open class root (copied from the class index) in order that homophony of open class roots not
result in common conjuncts in semantic representations—for instance, we don’t want the two
senses of decline exemplified in decline the proposal and decline five percent to have a common
entailment represented by a common conjunct. This indexing method works as long as the

labeling process produces different latent class labels for the different senses.

The last tree in Fig. 5.19 is the learned representation for the scalar motion sense of
the intransitive verb increase. In our approach, learning the argument alternation (diathesis)
relating the transitive increase (in its scalar motion sense) to the intransitive increase (in its
scalar motion sense) amounts to learning representations with a common component Rj7 A

increase,,. In this case, this is achieved.

5.5.5 Discussion

We have proposed a procedure which maps observations of subcategorization frames with
their complement fillers to structured lexical entries. We believe the method is scientifically

interesting, practically useful, and flexible because:

1. The algorithms and implementation are efficient enough to map a corpus of a hundred

million words to a lexicon.

2. The model and induction algorithm have foundations in the theory of parameterized fam-
ilies of probability distributions and statistical estimation. As exemplified in the paper,

learning, disambiguation, and evaluation can be given simple, motivated formulations.

3. The derived lexical representations are linguistically interpretable. This suggests the
possibility of large-scale modeling and observational experiments bearing on questions

arising in linguistic theories of the lexicon.

4. Because a simple probabilistic model is used, the induced lexical entries could be in-
corporated in lexicalized syntax-based probabilistic language models, in particular in

head-lexicalized models. This provides for potential application in many areas.

5. The method is applicable to any natural language where text samples of sufficient size,
computational morphology, and a robust parser capable of extracting subcategorization

frames with their fillers are available.

The pseudo-disambiguation task of Sect. 5.4 provides a hard evaluation of the learned
models, allowing comparison to other methods. The discussion of linguistic interpretation

suggests entirely independent linguistic evaluations of the adequacy of the learned lexicon.
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For instance, by linguistic criteria it is approximately uncontroversial whether a given verb
with both intransitive and transitive frames has a subject/object diathesis (as e.g. increase
does, but decline doesn’t). This would allow for an evaluation of a procedure (like the one

proposed here) which learns a lexicon with hidden linguistic structure.

5.6 Application to Target-Language Disambiguation in Trans-

lation

5.6.1 Motivation

In most transfer-based approaches to machine translation the major part of the work is done
by symbolic, i.e. non-statistical translation mechanisms. Clearly, a statistical disambiguation
(SD) component supporting the symbolic transfer can be very helpful in cases of failure of the
symbolic disambiguation component or cases of explosion of ambiguities. Such a supporting

SD component should ideally have the following features:

e robustness: In order to enable a disambiguation in most cases, one of the central
features of SD is its ability to assign a positive though possibly very small probability
to nearly every structure under consideration.

e efficiency: In cases of explosion of translation ambiguities, SD must facilitate quick

resolution.

economy: SD must be able to resolve translation ambiguities with a minimum of infor-

mation delivered from the symbolic translation component.

e domain-specificity: SD must be able to disambiguate translation alternatives accord-

ing to their use in a specific domain.

portability: A SD component for machine translation systems working with more than
one source/target language pair ideally should rely only on information which is auto-

matically obtainable from monolingual corpora.

accuracy: To built a sensible probability model on ambiguous structures, the proba-
bilities assigned to translation alternatives must be gathered by a mathematically well-
defined statistical inference mechanism and proven to be useful in a task-oriented eval-

uation procedure.

To illustrate these features, let us have a look at some recent approaches to statistical
disambiguation. One of the most influential works on target word sclection in machine trans-
lation is described in Dagan and Itai (1994). The SD of Dagan and Itai (1994) uses statistics
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exclusively on monolingual data. The information gathered is statistics on all grammatical
relations in which an ambiguous lexical item participates. In an experiment on translating He-
brew to English, their statistical model was applicable to 70 out of 100 of the ambiguous words,
achieving a precision of 91 %. In a second experiment on translating German to English, their
statistical model was applicable to 27 out of 54 of the ambigous words, achieving a precision
of 78 %. Given the relatively low recall values of 70 % and 50 %, their SD system clearly lacks
robustness. The usage of rich information on grammatical relations lets the approach seem
uneconomic and presumably not very efficient and portable. However, this approach achieves
high precision rates on small test corpora with low averages of 3.3 alternative translations and

high averages of 1.4 correct translations.

Another important approach to SD is the work of Melamed (1997). Melamed reports 42
% precision and 35-40 % recall using a gold standard for single-best word-to-word transla-
tions (French-English). The test corpus contains several thousand items and is a part of the
training corpus. Melamed’s best model can be viewed as a robust, economic, domain-specific,
and portable SD. Unfortunately, the size of average alternative translations is not reported.
Presumably, it is high. More importantly, the models were trained by using a part of the
training corpus as test set and the reported recall measures are not high. Thus, the models

main drawback is its lack of accuracy.

A further approach to be considered in the context of statistical disambiguation is the
approach to word-sense disambiguation presented in Resnik (1997). The connection of mono-
lingual word sense disambiguation to the task of target-language disambiguation can be made
by viewing candidate translations of a given lexical item as the different “senses” expressed in
terms of the target language. Resnik (1997) cited an average precision of 44.3 % for his exper-
iments on word-sense disambiguation evaluated on verb-object pairs for a random baseline of
28.5 %. His model can be interpreted as a robust, shallow, domain-unspecific, and accurate
SD, but it uses a fixed semantic network which is not available in most languages. Thus, in

terms of the above classification, it’s main drawback is the lack of portability.

To sum up, either the suggested SDs are not robust and economic (Dagan and Ito) or
they have a low accuracy even in the domain-specific case (Melamed) or they lack portability
(Resnik).

In the following, we will present a new approach to SD which uses the above described
latent class models as probabilistic disambiguation device. We will show that this approach
yields a robust, economic SD device that is portable and has a high accuracy even in the

domain-unspecific case.
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5.6.2 Statistical Disambiguation

This section is particularly concerned with the use of a statistical disambiguation component
that specifies the translation mapping of ambiguous nouns. This restriction to noun ambigu-
ity can motivated by observations in Buschbeck-Wolf (1997) who states that in contrast to
verbal and modifier predicates the disambiguation of nouns is difficult since it is impossible to
symbolically fix all contexts in which the one or the other translation is preferred. Thus, for

this task, it seems reasonable to rely on statistical information.

Consider for example the German sentence in Fig. 5.20 which is to be translated into
English. Suppose that the transfer-module will be presented with an input encoding the noun

argument “Karte” to be a direct object of the verbal predicate “spielen”.

GER |Sie spielen ausserdem die Karte der britischen Regierung
ID-76627|You are playing the card UK Government
ENG |You are playing the UK Government card

Figure 5.20: German-English transfer

Furthermore, the symbolic components are supposed to include a word-to-word translation
module translating “spiclen” to “play” and presenting the possibilitics “card”, “chart”, “map”,
and “ticket” as translations of “Karte”.

The task of the statistical disambiguator is to specify which of the presented four English
nouns should be taken as the proper argument of the predicate “spielen”. The idea employed
in our statistical approach is very simple: In order to decide which of the four verb-noun
combinations is the best one, we take the pair that is assigned the highest joint probability by
a reasonable probability model on such predicate-argument relations. For the above example,
the joint probabilities prc(play, card), pro(play, chart), pro(play, map), prc(play, ticket) have
to be compared. The verb-noun pair with the highest probability will then be taken as the
output of the statistical disambiguator. In case there is no unique maximum in this comparison,
the system yields the output “don’t-know”.

5.6.3 Disambiguation Experiments

The following experiments were performed with the English clustering models described in
Sect. 5.3.

Evaluation on a Pseudo-Disambiguation Task

We evaluated our clustering models on a pseudo-disambiguation task similar to the one de-

scribed in Sect 5.5, but specified to noun ambiguity. The task is to judge which of two nouns
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Figure 5.21: Evaluation on pscudo-disambiguation task

n and n' is more likely to appcar as argument of a given verb v where the pair (v,n) has
been cut out of the original training data and the pair (v,n') is constructed by pairing v
with a randomly chosen noun n'. The data were built by constructing an evaluation corpus
of (v,n,n') triples from a test corpus of 3,000 (v,n) pairs which was randomly cut out of the
original corpus of 1,280,715 tokens. Each verb n in the test corpus was combined with a noun
n’ which was randomly chosen according to its frequency such that the pair (v,n') did not
appear in the training and in the test corpus. Again, the elements v, n/, and n had to be part
of the reduced training corpus. As above, we restricted the verbs and nouns in the evaluation
corpus to the ones which occurred with at least 30 and at most 3000 partners in the original
training corpus. The reduced training corpus of 1,178,698 tokens was used to train a sequence

of clustering models which were evaluated on the resulting 1,685 evaluation triples.

Clustering models were parametrized in starting values of EM-training, in the number of
classes of the model (up to 300), and in the number of iteration steps (up to 50), resulting in
a sequence of 3 x 10 x 6 models. Accuracy was calculated as the number of times the model
decided for p(v,n) > p(v,n') (joint probability measure) resp. p(v|n) > p(v|n') (conditional
probability measure) out of all choices made. As shown in Fig. 5.21, we obtained an accuracy
of ca. 79 % for models between 35 and 100 classes, averaged over different starting values.
For models with more than 100 classes we sec a small but stable overfitting effect.

Evaluation on a Smoothing Task

Recall the experiments on the smoothing power of LC models as described in Sect. 5.4. There
we reported a proportion of the number of types in the English training corpus to the V x N-
space of 0.14 % without clustering compared to circa 93 % for clustering models with 50
classes and 50 iterations. As will be shown below, this remarkable increase in smoothing power

is one of the key features of our approach to cluster-based SD.
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Evaluation on a Golden Standard

To evaluate the output of the statistical disambiguator, we prepared an evaluation corpus
from the sentence-aligned debates of the European parliament (mlee = multilingual corpus for
cooperation). Each language is represented by ca. 9 million tokens. The direction of translation

was German to English.

angriff aggression, assault, offence, offense, onset, onslaught, attack , charge, offensive, raid, whammy, inroad

art fashion, fit, kind, wise, manner, type, species, mode, sort, variety, form, way

aufgabe abandonment, task, exercise, lesson, giveup, job , office, problem, tax

auswahl chaase, eligibility, sel choice, ch varity, , extract, range, sample

begriff concept, item, notion, idea

boden floor, soil, bottom, ground, land

einrichtung  |arrangement, constitution, establishment, feature, installation, institution, construction, setup, adjustment,
composition, organization

erweiterung | amplification, enh i ion, ion, upgrade, dilatation, dilation, upgrading,
add-on, increment

fehler blemish, blunder, bug, defect, demerit, error, fail, failure, fault, flaw, mistake, shortcom, shortcoming,
trauble, slip, blooper, lapse, lapsus

genehmigung | permission, approval, consent, bation, authorization

geschichte history, story, tale, saga, strip

gesellschaft | companion, companionship, society, company, party, associate

grenze boundary, frontier, limit, border, periphery, borderline, edge

grund base, cause, ground, master, matter, reason, bottom root

karte card, map, ticket, chart

lage site, situation, position, bearing, layer, tier

mangel deficiency, fault, lack, privation, scarcity, want, shortage, shortcoming, absence, dearth, demerit, desid
desideratum, insufficiency, paucity, scarceness

menge crowd, lot, mass, multitude, plenty, quantity, quantum , quiverful, volume, abundance, amount, aplenty,
assemblage , batch, crop, deal, heap, lashings, scores, set, loads, bulk

pruefung examination, ordeal, scrutiny, test, trial, inspection, exam, testing, tryout, verification, assay, canvass,
check, checkup, inquiry, perusal, reconsideration, scruting, exa

schwierigkeit | difficulty, problem, severity, trouble, ardousness, heaviness

seite page, side, point, aspect, party

i i tainty, certitude, i ity, safety, security , collateral , secureness, doubtlessness, sureness, guarantee,
guaranty, deposit

stimme voice, vote, tones

termin date, appointment, meeting, time, term, deadline

verbindung  |chain, conjunction, connection, connexion, fusion, incorporation, interconnection, joint , junction, link,

compound, alliance , catenation, tie, union, bond, chaining, association, interface, join, liaison, contact,
linkage, liaise, touch, relation
verbot ban, interdiction, prohibition, forbade, forbad, forbiddance

flich ent, ittal, duty, o indebted , onus, bond, debt, duty, engagement,

liability, undertaking

vertrauen confidence, faith, reliance, trust, confidentialness, trustfulness, assurance, dependence, private, secret
wahl choice , election, option, ballot, electoral, alternative, poll list
weg lane, road, way, alley, route, path
id d i resistor, ition, drag, resistivity
zeichen char, character, icon, sign, signal, symbol, mark, token, figure, omen
ziel aim, designation, destination, target, end, goal, object, objective, sightings, intention, prompt, ends

ausammenhang | coherence, context, contiguity, connection
Zusti d pp ion, consent, ion, allowance, approval, assent, compliance,

compliancy, acclamation

Figure 5.22: 35 word dictionary extracted from online-resources

The gold standard was prepared in the following way. We gathered word-to-word trans-
lations by online-available dictionaries and eliminated German nouns for which we could not
find at least two English translations showing a genuine “semantic” ambiguity. The result-
ing dictionary is shown in Fig. 5.22. It includes 35 German nouns with an average of 9-10
translations, i.e., in sum 333 English nouns. Based on this dictionary, we extracted all bilin-

gual sentence pairs from the corpus which included a German noun from this dictionary in
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Figure 5.23: Precision of statistical disambiguation versus empirical and random choice

a verb-object position (“.as0:0”). Furthermore, the English translation of the object was re-
quired to be included in our dictionary and had to appear in a similar verb-object position as
the source-object for an acceptable English translation of the German verb. We marked the
German noun ng in the source-sentence, its English translation n, as appearing in the corpus,
and the English lexical verb ve. This semi-automatic procedure resulted in a test corpus of

1341 sentences.

The goal of the statistical disambiguation was to determine for each marked German noun
ng the dictionary-specified translation n € Trans(ng) which resulted in the most probable
combination (ve,n). That is, as a translation of ny in the context of v,

ne = argmax prc(ve,n)
nel'rans(ng)
is selected if the arg max is defined. Otherwise, the output of the disambiguator is “don’t know”.
The results of our LC-disambiguation tested against the gold standard are shown in Fig. 5.23
(precision) and Fig. 5.24 (recall). The clustering-based statistical disambiguator is compared
with the empirical distribution of (v, n)-pairs in the training corpus and a random distribution
on (v, n)-pairs. Precision measures the number of times the disambiguator under consideration
chooses the same English translation as the human translator defining the gold standard. That
is, precision is the number of “correct” translations according to the gold standard divided by
the number of “correct” + “incorrect” translation. Recall specifies the number of times the
disambiguation component chooses the “correct” translation out of the “correct” + “incorrect”

{ “don’t know” decisions.

Fig. 5.23 shows the precision results for LC-disambiguators using a joint or a conditional
probability measure, compared to the joint and conditional empirical distribution and a ran-
dom distribution. The best result is obtained for the joint empirical distribution of (v,n)-
pairs (45.928 %). According to the maximum likelihood paradigm, the LC-disambiguator

approaches the empirical distribution in the limit of the number of classes, i.e., we see an im-
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Figure 5.24: Recall of statistical disambiguation versus empirical and random choice

provement from ca. 31 % for LC-models with joint probability measure and 2 classes up to ca.
43 % for LC-models with 300 classes measured with a joint probability measure. The results
arc worse for both the conditional empirical distribution and the conditional LC-model, but
worst for the random distribution (ca. 14 %). Note that these numbers have to be considered

in the context of an average of ca. 10 translation choices for each noun.

However, as can be seen in Fig. 5.24, showing the recall results for the disambiguators,
the main advantage of our LC-disambiguator is the gain in recall it has over the empirical
distribution. That is, the high smoothing power of the LC-model enables a disambiguation

decision for nearly every test item, i.e., argmax prc(ve,n) is never undefined since there is
neT'rans(ng)

no case where prc(ve,n) = 0 for all n € Trans(ng). Thus we get a recall percentage of ca. 43
% for the best LC-disambiguators compared to 36.167 % for the joint empirical distribution.
Random choice gives a result of ca. 14 % recall.

Note that the curves for the LC-disambiguator have the same shape as the curves resulting
from the pseudo-disambiguation task reported above, thus making it a good guess to choose
a proper LC-model in terms of class-cardinality from the cheaper pseudo-disambiguation task
rather than choosing it from the labor-intensive evaluation on a gold standard.

In a subset of 100 test items, a human judge having access only to v, and the set of
candidates for ne, i.e. the information used by the model, selected among translations. On
this set, human performance was 39 % precision and recall. Performance for class models of
size 100, 200, and 300 was 35 %, 39 %, and 45 % respectively (precision = recall ). Joint
cmpirical performance was 43 % precision and 34 % recall.
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5.6.4 Discussion

We have proposed a statistical disambiguation component based on latent class models on

pairs of grammatically related lexical items.

We believe the method meets the main conditions on a powerful statistical disambiguation
component because:

1. The LC disambiguator has a high smoothing power, thus it is robust.

2. It resolves translation ambiguities in just one run, so it is quick.

3. It uses only minimal informations from the symbolic transfer component, so it can be

called economic.
4. It relies only on monolingual information, so it is portable.

5. Evaluation on a pseudo-disambiguation task (80 % accuracy) and on a golden standard
method (43 % accuracy on ca. 10 alternatives in average) shows that the method is

accurate.
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