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EM-Based Clustering for NLP Applications

Mats Rooth, Stefan Riezler, Detlef Prescher, Glenn Carroll, and Franz Beil

Abstract

We present a probabilistic clustering method defining the clustering task as induction
of hidden parameters of a probability model on dyadic linguistic data. Induction of
unobserved class parameters is accomplished as statistical inference in the framework
of maximume-likelihood estimation from incomplete data via the EM algorithm. We
present illustrative examples of induced clusters from large sets of English and Ger-
man data. The clustering models are evalutated on a pseudo-disambiguation task
testing the power of the models to generalize over unseen data. We present two
applications of the clustering models to natural language processing applications.
The first task concerns the induction of semantic labels for subcategorization slots
of English and German lexical verbs. Based on induced clusters of subcategoriza-
tion frames and their nominal fillers, induction of labels of the respective slots is
accomplished by a further application of EM. We report experiments with large sets
of German and English intransitive and transitive verbs and outline a linguistic in-
terpretation of the learned representations. A second application concerns the use
of clustering models on English verb-noun combinations to select among candidate
English translations of German nouns. We present an evaluation of clustering mod-
els on a pseudo-disambiguation task for noun-ambiguity. Furthermore, we evaluate
the models on a gold standard extracted from a bilingual corpus. The performace of
cluster-based target-language disambiguation is reported for models of various sizes

and compared to simpler statistical disambiguation methods.
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5.1 Introduction

Probabilistic clustering methods for natural language applications mainly focus on the follow-
ing two tasks: (i) induction of smooth probability models on language data, (ii) automatic
discovery of class-structure in natural language. The first task uses clustering as a solution to
the problem of sparse data. In such applications the class-structure itself is not of interest,
rather data clusters are consulted as general back-up sources of information when information
about specific events is sparse or missing in the input. In contrast to this, for the second task
we are interested in the structure of the induced clusters as a statistical semantics underly-
ing the data in question. In the following we will present two applications of a probabilistic

clustering model each of which stresses one of these tasks.

Clustering is conceptualized in our approach as induction of a class-based probability model
on dyadic linguistic data—a sample of verb-noun pairs extracted from the maximal probabil-
ity parses of large unannotated English and German data. Classes are introduced as hidden
parameters of the probability model on verb-noun pairs. Induction of these unobserved pa-
rameters is accomplished in the framework of maximum likelihood estimation from incomplete
data via the EM algorithm.

We present some illustrative examples of induced clusters and report the results of a harder
evaluation of the models on a pseudo-disambiguation task testing the power of the models to

generalize over unseen data.

The first application we will present is the induction of semantically annotated lexica based
on induced clusters. In this application the stress is clearly on automatic discovery of class-
structure. Based on clusters of subcategorization frames of verbs and their nominal fillers,
induction of labels for the respective slots of subcat frames is accomplished by a further appli-
cation of EM. We report results on experiments with observations derived from large English
and German corpora. Furthermore, we outline an interpretation of the learned representations

as theoretical-linguistic decompositional lexical entries.

The second application concentrates on the smoothing aspect of the clustering models. Here
class-based probability models on English verb-noun combinations are used to disambiguate
nouns senses in the context of ambiguous translations of nouns from German to English.
We present an evaluation of models on a pseudo-disambiguation task for noun-ambiguity.
In addition to this cheap evaluation, we present an evaluation on a gold standard which is
extracted from a bilingual corpus. We report the performance of cluster-based target-language
disambiguation for models of various sizes and compared to simpler methods such as plain

maximum likelihood estimation on the training corpus.
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5.2 EM-Based Clustering

In our clustering approach, classes are derived directly from distributional data—a sample
of pairs of verbs and nouns, gathered by parsing an unannotated corpus and extracting the
fillers of grammatical relations. Semantic classes corresponding to such pairs are viewed as
hidden variables or unobserved data in the context of maximum likelihood estimation from
incomplete data via the EM algorithm. This approach allows us to work in a mathematically
well-defined framework of statistical inference, i.e., standard monotonicity and convergence

results for the EM algorithm extend to our method.

The basic ideas of our EM-based clustering approach were presented in Rooth (Ms) (see
also Rooth (1998)). An important property of our clustering approach is the fact that it is
a “soft” clustering method, defining class membership as a conditional probability distribu-
tion over verbs and nouns. In contrast, in hard (Boolean) clustering methods such as that of
Brown et al. (1992), every word belongs to exactly one class, which because of homophony
is unrealistic. The foundation of our clustering model upon a probability model furthermore
contrasts with the merely heuristic and empirical justification of similarity-based approaches
to clustering (Dagan et al. 1998). The probability model we use can be found earlier in Pereira
et al. (1993). However, in contrast to this approach, our statistical inference method for clus-
tering is formalized clearly as an EM-algorithm. Approaches to probabilistic clustering similar
to ours were presented recently in Saul and Pereira (1997) and Hofmann and Puzicha (1998).
There also EM-algorithms for similar probability models have been derived, but applied only
to simpler tasks not involving a combination of EM-based clustering models as in our lexicon

induction experiment.

We seek to derive a joint distribution of verb-noun pairs from a large sample of pairs of
verbs v € V and nouns n € N. The key idea is to view v and n as conditioned on a hidden
class ¢ € C, where the classes are given no prior interpretation. The semantically smoothed

probability of a pair (v,n) is defined to be:
p(v,n) =Y _ple,v,n) =Y _ plc)p(v|c)p(nlc)
ceC ceC

The joint distribution p(c,v,n) is defined by p(c,v,n) = p(c)p(v|c)p(n|c). Note that by con-

struction, conditioning of v and n on each other is solely made through the classes c.

In the framework of the EM algorithm (Dempster et al. 1977; McLachlan and Krishnan
1997), we can formalize clustering as an estimation problem for a latent class (LC) model as

follows. We are given:

e 3 sample space Y of observed, incomplete data, corresponding to pairs from V x N,

e a sample space X of unobserved, complete data, corresponding to triples from CxV x N,
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Figure 5.1: English class 5: communicative action

e aset X(y) ={z € X | z=(cvy), c € C} of complete data related to the observation
Y,

e a complete-data specification pg(z), corresponding to the joint probability p(c,v,n) over
C x V x N, with parameter-vector 8 = (6., Oyc, Onclc € C,v € V,n € N),

e an incomplete data specification py(y) which is related to the complete-data specification

as the marginal probability pg(y) = > X() po(x).

The EM algorithm is directed at finding a value 6 of 6 that maximizes the incomplete-data

log-likelihood function L as a function of 8 for a given sample Y, i.e.,

~

0 = arg max L(6) where L(0) = lang(y).
0
y

As prescribed by the EM algorithm, the parameters of L(f) are estimated indirectly by
proceeding iteratively in terms of complete-data estimation for the auxiliary function Q(6; H(t)),

which is the conditional expectation of the complete-data log-likelihood Inpg(z) given the
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observed data y and the current fit of the parameter values §®) (E-step). This auxiliary
function is iteratively maximized as a function of 6 (M-step), where each iteration is defined

by the map
0+ = M(6") = arg max Q(6;6)
0

Note that our application is an instance of the EM-algorithm for context-free models (Baum
et al. 1970; Baker 1979), from which the following particularly simple reestimation formulae
can be derived. Let £ = (c,y) for fixed ¢ and y, and f(y) be the frequency of y in the training
sample. Then

2yefoixn f(Y)po(z(y)
M) >, F@polaly)
B ZyEVx{n} f(W)po(z|y)
M {Bnc) >, F)peely)
M0, — Yo f (TJJ)JTQ(W) .

Intuitively, the conditional expectation of the number of times a particular v, n, or ¢ choice is
made during the derivation is prorated by the conditionally expected total number of times a
choice of the same kind is made. As shown by Baum et al. (1970), every such maximization step
increases the log-likelihood function L, and a sequence of re-estimates eventually converges to

a (local) maximum of L.

5.3 Clustering Examples

In the following, we will present some examples of induced clusters. In one experiment the input
to the clustering algorithm was a training corpus of 1,178,698 tokens (608,850 types) of English
verb-noun pairs participating in the grammatical relations of intransitive and transitive verbs
and their subject and object fillers. The data were gathered from the maximal-probability
parses the head-lexicalized probabilistic context-free grammar of Carroll and Rooth (1998)

gave for the British National Corpus (117 million words).

Fig. 5.1 shows an induced semantic class out of a model with 35 classes. At the top are
listed the 30 most probable nouns in the p(n|5) distribution and their probabilities, and at
left are the 30 most probable verbs in the p(v|5) distribution where 5 is the class index. Those
verb-noun pairs which were seen in the training data appear with a dot in the class matrix.
Verbs with suffix .as : s indicate the subject slot of an active intransitive. Similarily .aso : s
denotes the subject slot of an active transitive, and .aso : o denotes the object slot of an
active transitive. Thus v in the above discussion actually consists of a combination of a verb

with a subcat frame slot as : s, aso : s, or aso : o. Induced classes often have a basis in
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Figure 5.2: English class 17: scalar change

lexical semantics; class 5 can be interpreted as clustering agents, denoted by proper names,
“man”, and “woman”, together with verbs denoting communicative action. Fig. 5.2 shows a
cluster involving verbs of scalar change and things which can move along scales. Fig. 5.9 can

be interpreted as involving different dispositions and modes of their execution.

In another experiment, we extracted 418,290 tokens (318,086 types) of pairs of German
verbs or adjectives and grammatically related nouns from maximal-probability parses; the
corpus parsed was a 4.1 million word corpus of 450,000 German subordinate clauses extracted
from a 200 million word corpus of German newspapers. The lexicalized statistical model for
German is described in Beil et al. (1998).

The figures 5.8 and 5.3 show two classes out of a model with 35 classes. On the left and at
the top are listed the 30 highest probable verb/adjective predicates and nouns appearing as
fillers of the verb/adjective slots, ordered according to their probability given the class. Verbal
predicates are annotated with subcategorization slots, e.g., liegen- VPA.np:NP.Nom denotes
the nominative noun-phrase filler of the subject-slot of an active verb liegen subcategorizing

for a nominative and a prepositional phrase. tragen-VPA.na:NP.Akk is the accusative noun-
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Figure 5.3: German class 26: scalar change
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phrase filler of the object slot of the transitive verb tragen, steigen-VPA.n:NP.Nom denotes
the nominative filler of the subject slot of the intransitive verb steigen. Clearly, due to the
smaller size of the German input data compared to the English data, German classes are less

dense than the English counterparts.

Fig. 5.8 shows a class which can be interpreted as govermental/public authority, involving
nouns such as police force and public prosecutor’s office. Fig. 5.3 shows a cluster involving

scalar motion verbs and things which can move along scales.

5.4 Evaluation of Clustering Models

5.4.1 Pseudo-Disambiguation

We evaluated our clustering models on a pseudo-disambiguation task similar to that performed
in Pereira et al. (1993), but differing in detail. The task is to judge which of two verbs v and
v' is more likely to take a given noun n as its argument where the pair (v,n) has been cut out
of the original corpus and the pair (v/,n) is constructed by pairing n with a randomly chosen
verb v’ such that the combination (v',n) is completely unseen. Thus this test evaluates how

well the models generalize over unseen verbs.

The data for this test were built as follows. We constructed an evaluation corpus of (v, n,v")
triples from a test corpus of 3,000 types of (v,n) pairs which were randomly cut out of the
original corpus of 1,280,712 tokens, leaving a training corpus of 1,178,698 tokens. Each noun
n in the test corpus was combined with a verb v’ which was randomly chosen according to
its frequency such that the pair (v',n) did appear neither in the training nor in the test
corpus. However, the elements v, v’, and n were required to be part of the training corpus.
Furthermore, we restricted the verbs and nouns in the evaluation corpus to the ones which
occurred at least 30 times and at most 3,000 times with some verb-functor v in the training
corpus. The resulting 1,337 evaluation triples were used to evaluate a sequence of clustering

models trained from the training corpus.

The clustering models we evaluated were parameterized in starting values of the training
algorithm, in the number of classes of the model, and in the number of iteration steps, resulting
in a sequence of 3 x 10 x 6 models. Starting from a lower bound of 50 % for randomly
initialized models, accuracy was calculated as the number of times the model decided for
p(nlv) > p(n|v’) out of all choices made. Fig. 5.4 shows the evaluation results for models
trained with 50 iterations, averaged over starting values, and plotted against class cardinality.
Different starting values had an effect of © 2 % on the performance of the test. We obtained a
value of about 80 % accuracy for models between 25 and 100 classes. Models with more than

100 classes show a small but stable overfitting effect.
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Figure 5.4: Evaluation of English models on pseudo-disambiguation task

The German models were evaluated in a similar way. An evaluation corpus of 886 (v, n,v")
triples was extracted from the original corpus of 428,446 verb/adjective-noun tokens, leaving
418,290 tokens for training a sequence of clustering models. Again, the models were param-
eterized in starting values, number of classes and iteration steps, resulting in a sequence of
3 x 11 x 20 models. Fig. 5.5 shows the evaluation results for models trained with 100 iterations,
averaged over starting values, and plotted against class cardinality. We obtained an accuracy
of over 75 % for models up to 35 classes. Different starting values had an effect of ¥ 2 % on
the evaluation results. For models with more than 50 classes again a small overfitting effect
can be seen.

0.8

generalization power over ambiguous verbs ——

0.7 B

accuracy
]
o)
a
T
!

0.6 - -

05 L L L L
o 20 40 60 80 100
number of classes

Figure 5.5: Evaluation of German models on pseudo-disambiguation task

5.4.2 Smoothing Power

A second experiment addressed the smoothing power of the model by counting the number of

(v,m) pairs in the set V' x N of all possible combinations of verbs and nouns which received
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Figure 5.6: Evaluation of English models on smoothing task

a positive joint probability by the model. The V x N-space for the above clustering models
included about 425 million (v,7n) combinations; we approximated the smoothing size of a
model by randomly sampling 1,000 pairs from V' x N and returning the percentage of positively
assigned pairs in the random sample. Fig. 5.6 plots the smoothing results for the above models
against the number of classes. Starting values had an influence of ¥ 1 % on performance. Given
the proportion of the number of types in the training corpus to the V x N-space, without
clustering we have a smoothing power of 0.14 % whereas for example a model with 50 classes

and 50 iterations has a smoothing power of about 93 %.

Corresponding to the maximum likelihood paradigm, the number of training iterations
had a decreasing effect on the smoothing performance whereas the accuracy of the pseudo-
disambiguation was increasing in the number of iterations. We found a number of 50 iterations

to be a good compromise in this trade-off.

For German models we observed a baseline smoothing power of 0.012 % which is the
relation of the number of types in the German training corpus to the 2.5 billion combinations
in the V x N-space for the German experiments. Despite of the fact that this baseline is 10
times smaller than the baseline for the English models, we have a smoothing power of about
32 % for models with 25 classes, which were best in terms of the pseudo-disambiguation task.
This is shown in Fig. 5.7. The best compromise in terms of iterations was a number of 100

iterations for the German experiments.

5.5 Application to Lexicon Induction Based on Latent Classes

5.5.1 Motivation

An important challenge in computational linguistics concerns the construction of large-scale

computational lexicons for the numerous natural languages where very large samples of lan-
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Figure 5.7: Evaluation of German models on smoothing task

guage use are now available. Resnik (1993) initiated research into the automatic acquisition of
semantic selectional restrictions. Ribas (1994) presented an approach which takes into account
the syntactic position of the elements whose semantic relation is to be acquired. However, those
and most of the following approaches require as a prerequisite a fixed taxonomy of seman-
tic relations. This is a problem because (i) entailment hierarchies are presently available for
few languages, and (ii) we regard it as an open question whether and to what degree exist-
ing designs for lexical hierarchies are appropriate for representing lexical meaning. Both of
these considerations suggest the relevance of inductive and experimental approaches to the

construction of lexicons with semantic information.

This section presents a method for automatic induction of semantically annotated subcat-
egorization frames from unannotated corpora. We use a statistical subcat-induction system
which estimates probability distributions and corpus frequencies for pairs of a head and a
subcat frame (Carroll and Rooth 1998). The statistical parser can also collect frequencies for
the nominal fillers of slots in a subcat frame. The induction of labels for slots in a frame is
based upon estimation of a probability distribution over tuples consisting of a class label, a
selecting head, a grammatical relation, and a filler head. The class label is treated as hidden

data in the EM-framework for statistical estimation.

5.5.2 Probabilistic Labeling with Latent Classes using EM-estimation

To induce latent classes for the subject slot of a fixed intransitive verb the following statistical
inference step was performed. Given a latent class model prc(-) for verb-noun pairs, and a
sample ny,...,ny of subjects for a fixed intransitive verb, we calculate the probability of an

arbitrary subject n € N by:

p(n) =Y _ple,n) =Y ple)pre(nle).

ceC ceC
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Figure 5.8: German class 14: governmental /public authority
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The estimation of the parameter-vector § = (6.|c € C) can be formalized in the EM framework
by viewing p(n) or p(c,n) as a function of @ for fixed prc(.). The re-estimation formulae
resulting from the incomplete data estimation for these probability functions have the following

form (f(n) is the frequency of n in the sample of subjects of the fixed verb):

>nen f(n)pg(cin)
Yonen f(n)

A similar EM induction process can be applied also to pairs of nouns, thus enabling induction

M(Gc) =

of latent semantic annotations for transitive verb frames. Given a LC model prc(-) for verb-
noun pairs, and a sample (nq,n2)1,...,(n1,n2)y of noun arguments (n; subjects, and no
direct objects) for a fixed transitive verb, we calculate the probability of its noun argument

pairs by:

p(ni,mg) = Y pler,ca,ma,mo)
c1,c2€C

= Y ple,e)pro(nile)pre(nsle)
c1,c2€C
Again, estimation of the parameter-vector 8 = (0.,.,|c1,c2 € C) can be formalized in an EM
framework by viewing p(nq,ne) or p(ci1,c2,n1,n2) as a function of @ for fixed pyc(.). The re-
estimation formulae resulting from this incomplete data estimation problem have the following
simple form (f(n1,n2) is the frequency of (ni,m2) in the sample of noun argument pairs of
the fixed verb):

> nimeen £ (n1,n2)po(cr, ealni, mo)

Yonyneen f(11,n2)

Note that the class distributions p(c) and p(cy, c2) for intransitive and transitive models can

M(00102) =

also be computed for verbs unseen in the LC model.

5.5.3 Lexicon Induction Experiments

In a first experiment with English data we used a model with 35 classes. From maximal prob-
ability parses for the British National Corpus derived with the statistical parser of Carroll and
Rooth (1998), we extracted frequency tables for intransitive verb/subject pairs and transitive
verb/subject /object triples. The 500 most frequent verbs were selected for slot labeling. Fig.
5.10 shows two verbs v for which the most probable class label is 5, a class which we earlier
described as communicative action, together with the estimated frequencies of f(n)pg(c|n) for

those ten nouns n for which this estimated frequency is highest.
Fig. 5.11 shows corresponding data for an intransitive scalar motion sense of increase.

Fig. 5.12 shows the intransitive verbs which take 17 as the most probable label. Intuitively,

the verbs are semantically coherent. When compared to Levin (1993)’s 48 top-level verb classes,
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Figure 5.9: English class 8: dispositions

we found an agreement of our classification with her class of “verbs of changes of state” except
for the last three verbs in the list in Fig. 5.12 which is sorted by probability of the class label.

Fig. 5.13 shows the most probable pair of classes for increase as a transitive verb, to-
gether with estimated frequencies for the head filler pair. Note that the object label 17 is the
class found with intransitive scalar motion verbs; this correspondence is exploited in the next

section.

Further experiments were done with two German models with 35 and 50 classes respec-
tively. The data for these experiments were extracted from the maximal probability parses of
a 4.1 million word corpus of German subordinate clauses, parsed with the lexicalized prob-
abilistic grammar of Beil et al. (1998). Fig. 5.14 shows the subjects of the intransitive verb
bekanntgeben (make public). The nouns are classified with probability 0.999999 to class 14,
which was described in Sect. 5.3 as class of govermental/public-authority. The numbers in the

column show the estimated frequencies of the subject fillers.

Fig. 5.15 shows the subjects of the intransitive verb steigen (rise) which belong with
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blush 5  0.982975|| snarl 5 0.962094
constance 3 mandeville 2
christina 3 jinkwa 2

willie 2.99737 ||man 1.99859
ronni 2 scott 1.99761
claudia 2 omalley  1.99755
gabriel 2 shamlou 1
maggie 2 angalo 1
bathsheba 2 corbett 1

sarah 2 southgate 1

girl 1.9977 |lace 1

Figure 5.10: Lexicon entries: blush, snarl

increase 17 0.923698
number 134.147 |proportion 23.8699

demand 30.7322 |size 22.8108
pressure 30.5844 |rate 20.9593
temperature 25.9691 |level 20.7651
cost 23.9431 |price 17.9996

Figure 5.11: Scalar motion increase.

probability 0.67273 to class 26 which was interpreted in Sect. 5.3 as a class of gradation/scalar

change.

Similar to the English experiments we observe semantic uniformity in the verbs of scalar
change. Fig. 5.16 shows 10 intransitive verbs which take class 14 of a 50-classes model (corre-
sponding to class 26 of the 35-class model) as the most probable class to label their respective
subject slots. On the basis the most probable class labels these verbs can be summarized as
scalar motion verbs. When compared to linguistic classifications of verbs given by Schuhmacher
(1986), we found an agreement of our classification with the class of “einfache Anderungsver-
ben” (simple verbs of change) except for the verbs anwachsen (increase) and stagnieren (stag-

nate) which were not classified there at all.

An example of the two most probable subject-object class pairs of a transitive verb, senken
(lower) is shown in Fig. 5.17. Class 14 has been introduced before as govermental/public

authority and class 26 as gradation/scalar change.

Fig. 5.18 shows the transitive verb dauern (last/go on) selecting the class-pair (0,10)
with probability 0.957095 as semantic label for its subject and object slots. Class 0 can be

interpreted as project/action-class and class 10 as class of time.
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0.977992 decrease |0.560727 drop
0.948099 double |0.476524 grow
0.923698 increase [0.42842 vary
0.908378 decline [0.365586 improve
0.877338 rise 0.365374 climb
0.876083 soar 0.292716 flow
0.803479 fall 0.280183 cut
0.672409 slow 0.238182 mount
0.583314 diminish

Figure 5.12: Scalar motion verbs

increase (8,17) 0.3097650
development - pressure 2.3055
fat - risk 2.11807
communication - awareness 2.04227

supplementation - concentration 1.98918

increase - number 1.80559

Figure 5.13: Transitive increase with estimated frequencies for filler pairs.

5.5.4 Linguistic Interpretation of Latent Class Labels

In some linguistic accounts, multi-place verbs are decomposed into representations in-
volving (at least) one predicate or relation per argument. For instance, the transitive
causative/inchoative verb increase, is composed of an actor/causative verb combining with
a one-place predicate in the structure on the left in Fig. 5.19. Linguistically, such representa-
tions are motivated by argument alternations (diathesis), case linking and deep word order,
language acquistion, scope ambiguity, by the desire to represent aspects of lexical meaning, and
by the fact that in some languages, the postulated decomposed representations are overt, with
each primitive predicate corresponding to a morpheme. For references and recent discussion
of this kind of theory see Hale and Keyser (1993) and Kural (1996).

We will sketch an understanding of the lexical representations induced by latent-class la-
beling in terms of the linguistic theories mentioned above, aiming at an interpretation which
combines computational learnability, linguistic motivation, and denotational-semantic ade-
quacy. The basic idea is that latent classes are computational models of the atomic relation
symbols occurring in lexical-semantic representations. As a first implementation, consider re-
placing the relation symbols in the first tree in Fig. 5.19 with relation symbols derived from
the latent class labeling. In the second tree in Fig 5.19, R;7 and Rg are relation symbols with
indices derived from the labeling procedure of Sect. 5.5. Such representations can be semanti-

cally interpreted in standard ways, for instance by interpreting relation symbols as denoting
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bekanntgeben 14 0.999999|(make public)

Sprecher 4 (spokesman)

Polizei 3 (police)

BundesAmt 3 (Federal Agency)
BiirgerMeister 2 (mayor)

VorstandsChef 2 (Chairman of the board)
GeschéftsLeitung 2 (manager)

Vorstand 2 (board of management)
unternehmen 1.99996 |(company)

WetterAmt 1 (meteorological office)
VolksBank 1 (cooperative bank)

Figure 5.14: Intransitive lexicon entry: bekanntgeben (make public)

steigen 26 0.67273|(rise)

Zahl 23.333 |(number)

Preis 15.895 |(price)
ArbeitsLosigkeit  10.8788|(unemployment)
Lohn 9.72965 | (wage)
NachFrage 6.83619|(demand)

Zins 6.80322| (interest)
Auflage 5.22654|(print run)
Beitrag 4.22577|(contribution)
Produktion 4.21641|(output)
GrundstuecksPreis 4 (price of a piece of land)

Figure 5.15: Intransitive lexicon entry: steigen (rise)
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0.741467 ansteigen
0.720221 steigen
0.693922 absinken
0.656021 sinken
0.438486 schrumpfen

(go up)
(
(
(
(
0.375039 zuriickgehen |(decrease)
(
(
(
(

rise)
sink)

0.316081 anwachsen
0.215156 stagnieren
0.160317 wachsen
0.154633 hinzukommen

increase)
stagnate)
grow)

be added)

Figure 5.16: German intransitive scalar change verbs

senken (14,26) 0.450352| (lower)

BundesBank - LeitZins 5.81457 |(Federal bank - base rate)

BundesBank - Zins 2.97838 |(Federal bank - interest)

superMarkt - Preis 1 (super market - price)

SommerGeschéft - Verlust 1 (summer business - loss)

BundesBank - DiskontSatz 0.99999 |(Federal bank - minimum lending rate)
senken (14,14) 0.147857

BundesBank - Lombardsatz 0.999973 | (Federal bank - rate on loanes on security)
StrafAndrohung - AbtreibungsQuote 0.96842 |(threat of punishment - abortion rate)
StrafAndrohung - AbtreibungsZahl 0.96842 |(threat of punishment - number of abortions)
FachHandel - LagerKost 0.878333|(stores - storage charges)

Harmonisierung - sozialNiveau 0.764319| (harmonization - social level)

Figure 5.17: Transitive lexicon entries for senken (lower)

relations between events and individuals.

Such representations are semantically inadequate for reasons given in philosophical cri-
tiques of decomposed linguistic representations; see Fodor (1998) for recent discussion. A
lexicon estimated in the above way has as many primitive relations as there are latent classes.
We guess there should be a few hundred classes in an approximately complete lexicon (which
would have to be estimated from a corpus of hundreds of millions of words or more). Fodor’s
arguments, which are based on the very limited degree of genuine interdefinability of lexical
items and on Putnam’s arguments for contextual determination of lexical meaning, indicate
that the number of basic concepts has the order of magnitude of the lexicon itself. More
concretely, a lexicon constructed along the above principles would identify verbs which are
labelled with the same latent classes; for instance it might identify the representations of grab

and touch.

For these reasons, a semantically adequate lexicon must include additional relational con-
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davern (0,10) 0.957095

last/go on)

Entwirrung - Zeit 2
BuergerFrageStunde - Stunde 2

Prozess - Jahr 2
schreckensZeit - Jahr 1
ratenZahlung - Jahr 1

(
(
(
(
(
(

disentanglement - time)
question time - hour)

trail - year)

scaring time - year)

buy in installments - year)

Figure 5.18: Transitive lexicon entry for dauern (last/to go on)

VP VP VP VP
NP V1 NPVl NP vl NP v
|
A A A R,, A increase,,
VPV VP \4 VP \4
| | |
A ACT R, R,
NP V NP V NPV
| | |
increase R,. R,, A increase,,

Figure 5.19: First tree: linguistic lexical entry for transitive verb increase. Second: correspond-

ing lexical entry with induced classes as relational constants. Third: indexed open class root

added as conjunct in transitive scalar motion increase. Fourth: induced entry for related in-

transitive increase.
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stants. We meet this requirement in a simple way, by including as a conjunct a unique constant
derived from the open-class root, as in the third tree in Fig. 5.19. We introduce indexing of the
open class root (copied from the class index) in order that homophony of open class roots not
result in common conjuncts in semantic representations—for instance, we don’t want the two
senses of decline exemplified in decline the proposal and decline five percent to have a common
entailment represented by a common conjunct. This indexing method works as long as the

labeling process produces different latent class labels for the different senses.

The last tree in Fig. 5.19 is the learned representation for the scalar motion sense of
the intransitive verb increase. In our approach, learning the argument alternation (diathesis)
relating the transitive increase (in its scalar motion sense) to the intransitive increase (in its
scalar motion sense) amounts to learning representations with a common component Ri7 A

increase, . In this case, this is achieved.

5.5.5 Discussion

We have proposed a procedure which maps observations of subcategorization frames with
their complement fillers to structured lexical entries. We believe the method is scientifically

interesting, practically useful, and flexible because:

1. The algorithms and implementation are efficient enough to map a corpus of a hundred

million words to a lexicon.

2. The model and induction algorithm have foundations in the theory of parameterized fam-
ilies of probability distributions and statistical estimation. As exemplified in the paper,

learning, disambiguation, and evaluation can be given simple, motivated formulations.

3. The derived lexical representations are linguistically interpretable. This suggests the
possibility of large-scale modeling and observational experiments bearing on questions

arising in linguistic theories of the lexicon.

4. Because a simple probabilistic model is used, the induced lexical entries could be in-
corporated in lexicalized syntax-based probabilistic language models, in particular in

head-lexicalized models. This provides for potential application in many areas.

5. The method is applicable to any natural language where text samples of sufficient size,
computational morphology, and a robust parser capable of extracting subcategorization

frames with their fillers are available.

The pseudo-disambiguation task of Sect. 5.4 provides a hard evaluation of the learned
models, allowing comparison to other methods. The discussion of linguistic interpretation

suggests entirely independent linguistic evaluations of the adequacy of the learned lexicon.
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For instance, by linguistic criteria it is approximately uncontroversial whether a given verb
with both intransitive and transitive frames has a subject/object diathesis (as e.g. increase
does, but decline doesn’t). This would allow for an evaluation of a procedure (like the one

proposed here) which learns a lexicon with hidden linguistic structure.

5.6 Application to Target-Language Disambiguation in Trans-

lation

5.6.1 Motivation

In most transfer-based approaches to machine translation the major part of the work is done
by symbolic, i.e. non-statistical translation mechanisms. Clearly, a statistical disambiguation
(SD) component supporting the symbolic transfer can be very helpful in cases of failure of the
symbolic disambiguation component or cases of explosion of ambiguities. Such a supporting

SD component should ideally have the following features:

e robustness: In order to enable a disambiguation in most cases, one of the central
features of SD is its ability to assign a positive though possibly very small probability

to nearly every structure under consideration.

o efficiency: In cases of explosion of translation ambiguities, SD must facilitate quick

resolution.

e economy: SD must be able to resolve translation ambiguities with a minimum of infor-

mation delivered from the symbolic translation component.

e domain-specificity: SD must be able to disambiguate translation alternatives accord-

ing to their use in a specific domain.

e portability: A SD component for machine translation systems working with more than
one source/target language pair ideally should rely only on information which is auto-

matically obtainable from monolingual corpora.

e accuracy: To built a sensible probability model on ambiguous structures, the proba-
bilities assigned to translation alternatives must be gathered by a mathematically well-
defined statistical inference mechanism and proven to be useful in a task-oriented eval-

uation procedure.

To illustrate these features, let us have a look at some recent approaches to statistical
disambiguation. One of the most influential works on target word selection in machine trans-
lation is described in Dagan and Itai (1994). The SD of Dagan and Itai (1994) uses statistics
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exclusively on monolingual data. The information gathered is statistics on all grammatical
relations in which an ambiguous lexical item participates. In an experiment on translating He-
brew to English, their statistical model was applicable to 70 out of 100 of the ambiguous words,
achieving a precision of 91 %. In a second experiment on translating German to English, their
statistical model was applicable to 27 out of 54 of the ambigous words, achieving a precision
of 78 %. Given the relatively low recall values of 70 % and 50 %, their SD system clearly lacks
robustness. The usage of rich information on grammatical relations lets the approach seem
uneconomic and presumably not very efficient and portable. However, this approach achieves
high precision rates on small test corpora with low averages of 3.3 alternative translations and

high averages of 1.4 correct translations.

Another important approach to SD is the work of Melamed (1997). Melamed reports 42
% precision and 35-40 % recall using a gold standard for single-best word-to-word transla-
tions (French-English). The test corpus contains several thousand items and is a part of the
training corpus. Melamed’s best model can be viewed as a robust, economic, domain-specific,
and portable SD. Unfortunately, the size of average alternative translations is not reported.
Presumably, it is high. More importantly, the models were trained by using a part of the
training corpus as test set and the reported recall measures are not high. Thus, the models

main drawback is its lack of accuracy.

A further approach to be considered in the context of statistical disambiguation is the
approach to word-sense disambiguation presented in Resnik (1997). The connection of mono-
lingual word sense disambiguation to the task of target-language disambiguation can be made
by viewing candidate translations of a given lexical item as the different “senses” expressed in
terms of the target language. Resnik (1997) cited an average precision of 44.3 % for his exper-
iments on word-sense disambiguation evaluated on verb-object pairs for a random baseline of
28.5 %. His model can be interpreted as a robust, shallow, domain-unspecific, and accurate
SD, but it uses a fixed semantic network which is not available in most languages. Thus, in

terms of the above classification, it’s main drawback is the lack of portability.

To sum up, either the suggested SDs are not robust and economic (Dagan and Ito) or
they have a low accuracy even in the domain-specific case (Melamed) or they lack portability
(Resnik).

In the following, we will present a new approach to SD which uses the above described
latent class models as probabilistic disambiguation device. We will show that this approach

yields a robust, economic SD device that is portable and has a high accuracy even in the

domain-unspecific case.
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5.6.2 Statistical Disambiguation

This section is particularly concerned with the use of a statistical disambiguation component
that specifies the translation mapping of ambiguous nouns. This restriction to noun ambigu-
ity can motivated by observations in Buschbeck-Wolf (1997) who states that in contrast to
verbal and modifier predicates the disambiguation of nouns is difficult since it is impossible to
symbolically fix all contexts in which the one or the other translation is preferred. Thus, for

this task, it seems reasonable to rely on statistical information.

Consider for example the German sentence in Fig. 5.20 which is to be translated into
English. Suppose that the transfer-module will be presented with an input encoding the noun

argument “Karte” to be a direct object of the verbal predicate “spielen”.

GER |Sie spielen ausserdem die Karte der britischen Regierung
ID-76627|You are playing the card UK Government
ENG |You are playing the UK Government card

Figure 5.20: German-English transfer

Furthermore, the symbolic components are supposed to include a word-to-word translation
module translating “spielen” to “play” and presenting the possibilities “card”, “chart”, “map”,

and “ticket” as translations of “Karte”.

The task of the statistical disambiguator is to specify which of the presented four English
nouns should be taken as the proper argument of the predicate “spielen”. The idea employed
in our statistical approach is very simple: In order to decide which of the four verb-noun
combinations is the best one, we take the pair that is assigned the highest joint probability by
a reasonable probability model on such predicate-argument relations. For the above example,
the joint probabilities prc(play, card), prc(play, chart), prc(play, map), prc(play, ticket) have
to be compared. The verb-noun pair with the highest probability will then be taken as the
output of the statistical disambiguator. In case there is no unique maximum in this comparison,

the system yields the output “don’t-know”.

5.6.3 Disambiguation Experiments

The following experiments were performed with the English clustering models described in
Sect. 5.3.

Evaluation on a Pseudo-Disambiguation Task

We evaluated our clustering models on a pseudo-disambiguation task similar to the one de-

scribed in Sect 5.5, but specified to noun ambiguity. The task is to judge which of two nouns
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Figure 5.21: Evaluation on pseudo-disambiguation task

n and n' is more likely to appear as argument of a given verb v where the pair (v,n) has
been cut out of the original training data and the pair (v,n’) is constructed by pairing v
with a randomly chosen noun n’. The data were built by constructing an evaluation corpus
of (v,n,n’) triples from a test corpus of 3,000 (v,n) pairs which was randomly cut out of the
original corpus of 1,280,715 tokens. Each verb n in the test corpus was combined with a noun
n' which was randomly chosen according to its frequency such that the pair (v,n') did not
appear in the training and in the test corpus. Again, the elements v, n’, and n had to be part
of the reduced training corpus. As above, we restricted the verbs and nouns in the evaluation
corpus to the ones which occurred with at least 30 and at most 3000 partners in the original
training corpus. The reduced training corpus of 1,178,698 tokens was used to train a sequence

of clustering models which were evaluated on the resulting 1,685 evaluation triples.

Clustering models were parametrized in starting values of EM-training, in the number of
classes of the model (up to 300), and in the number of iteration steps (up to 50), resulting in
a sequence of 3 x 10 x 6 models. Accuracy was calculated as the number of times the model
decided for p(v,n) > p(v,n') (joint probability measure) resp. p(v|n) > p(v|n') (conditional
probability measure) out of all choices made. As shown in Fig. 5.21, we obtained an accuracy
of ca. 79 % for models between 35 and 100 classes, averaged over different starting values.

For models with more than 100 classes we see a small but stable overfitting effect.

Evaluation on a Smoothing Task

Recall the experiments on the smoothing power of LC models as described in Sect. 5.4. There
we reported a proportion of the number of types in the English training corpus to the V' x N-
space of 0.14 % without clustering compared to circa 93 % for clustering models with 50
classes and 50 iterations. As will be shown below, this remarkable increase in smoothing power

is one of the key features of our approach to cluster-based SD.
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Evaluation on a Golden Standard

To evaluate the output of the statistical disambiguator, we prepared an evaluation corpus
from the sentence-aligned debates of the European parliament (mlcc = multilingual corpus for
cooperation). Each language is represented by ca. 9 million tokens. The direction of translation

was German to English.

angriff aggression, assault, offence, offense, onset, onslaught, attack , charge, offensive, raid, whammy, inroad

art fashion, fit, kind, wise, manner, type, species, mode, sort, variety, form, way

aufgabe abandonment, task, exercise, lesson, giveup, job , office, problem, tax

auswahl choose, eligibility, selection, choice, choosing, varity, assortment, extract, range, sample

begriff concept, item, notion, idea

boden floor, soil, bottom, ground, land

einrichtung arrangement, constitution, establishment, feature, installation, institution, construction, setup, adjustment,

composition, organization

erweiterung amplification, enhancement, expansion, extension, extention, upgrade, dilatation, dilation, upgrading,
add-on, increment

fehler blemish, blunder, bug, defect, demerit, error, fail, failure, fault, flaw, mistake, shortcom, shortcoming,
trouble, slip, blooper, lapse, lapsus

genehmigung permission, approval, consent, acceptance, approbation, authorization

geschichte history, story, tale, saga, strip

gesellschaft companion, companionship, society, company, party, associate

grenze boundary, frontier, limit, border, periphery, borderline, edge

grund base, cause, ground, master, matter, reason, bottom root

karte card, map, ticket, chart

lage site, situation, position, bearing, layer, tier

mangel deficiency, fault, lack, privation, scarcity, want, shortage, shortcoming, absence, dearth, demerit, desideration,
desideratum, insufficiency, paucity, scarceness

menge crowd, lot, mass, multitude, plenty, quantity, quantum , quiverful, volume, abundance, amount, aplenty,
assemblage , batch, crop, deal, heap, lashings, scores, set, loads, bulk

pruefung examination, ordeal, scrutiny, test, trial, inspection, exam, testing, tryout, verification, assay, canvass,

check, checkup, inquiry, perusal, reconsideration, scruting, exa
schwierigkeit difficulty, problem, severity, trouble, ardousness, heaviness

seite page, side, point, aspect, party

sicherheit certainty, certitude, immunity, safety, security , collateral , secureness, doubtlessness, sureness, guarantee,
guaranty, deposit

stimme voice, vote, tones

termin date, appointment, meeting, time, term, deadline

verbindung chain, conjunction, connection, connexion, fusion, incorporation, interconnection, joint , junction, link,

compound, alliance , catenation, tie, union, bond, chaining, association, interface, join, liaison, contact,
linkage, liaise, touch, relation

verbot ban, interdiction, prohibition, forbade, forbad, forbiddance

verpflichtung commitment, committal, duty, obligation, indebtedness , onus, bond, debt, duty, engagement,

liability, undertaking

vertrauen confidence, faith, reliance, trust, confidentialness, trustfulness, assurance, dependence, private, secret
wahl choice , election, option, ballot, electoral, alternative, poll list

weg lane, road, way, alley, route, path

widerstand resistance, resistor, opposition, drag, resistivity

zeichen char, character, icon, sign, signal, symbol, mark, token, figure, omen

ziel aim, designation, destination, target, end, goal, object, objective, sightings, intention, prompt, ends

zusammenhang | coherence, context, contiguity, connection
zustimmung accordance, agreement, approbation, consent, affirmation, allowance, approval, assent, compliance,

compliancy, acclamation

Figure 5.22: 35 word dictionary extracted from online-resources

The gold standard was prepared in the following way. We gathered word-to-word trans-
lations by online-available dictionaries and eliminated German nouns for which we could not
find at least two English translations showing a genuine “semantic” ambiguity. The result-
ing dictionary is shown in Fig. 5.22. It includes 35 German nouns with an average of 9-10
translations, i.e., in sum 333 English nouns. Based on this dictionary, we extracted all bilin-

gual sentence pairs from the corpus which included a German noun from this dictionary in
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Figure 5.23: Precision of statistical disambiguation versus empirical and random choice

a verb-object position (“.as0:0”). Furthermore, the English translation of the object was re-
quired to be included in our dictionary and had to appear in a similar verb-object position as
the source-object for an acceptable English translation of the German verb. We marked the
German noun n, in the source-sentence, its English translation n. as appearing in the corpus,
and the English lexical verb w,. This semi-automatic procedure resulted in a test corpus of

1341 sentences.

The goal of the statistical disambiguation was to determine for each marked German noun
ng the dictionary-specified translation n € Trans(ng) which resulted in the most probable
combination (ve,n). That is, as a translation of ny in the context of ve,

ne = argmax prc(ve,n)
neTrans(ng)
is selected if the arg max is defined. Otherwise, the output of the disambiguator is “don’t know”.
The results of our LC-disambiguation tested against the gold standard are shown in Fig. 5.23
(precision) and Fig. 5.24 (recall). The clustering-based statistical disambiguator is compared
with the empirical distribution of (v, n)-pairs in the training corpus and a random distribution
on (v, n)-pairs. Precision measures the number of times the disambiguator under consideration
chooses the same English translation as the human translator defining the gold standard. That
is, precision is the number of “correct” translations according to the gold standard divided by
the number of “correct” + “incorrect” translation. Recall specifies the number of times the
disambiguation component chooses the “correct” translation out of the “correct” + “incorrect”

+ “don’t know” decisions.

Fig. 5.23 shows the precision results for LC-disambiguators using a joint or a conditional
probability measure, compared to the joint and conditional empirical distribution and a ran-
dom distribution. The best result is obtained for the joint empirical distribution of (v,n)-
pairs (45.928 %). According to the maximum likelihood paradigm, the LC-disambiguator

approaches the empirical distribution in the limit of the number of classes, i.e., we see an im-
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Figure 5.24: Recall of statistical disambiguation versus empirical and random choice

provement from ca. 31 % for LC-models with joint probability measure and 2 classes up to ca.
43 % for LC-models with 300 classes measured with a joint probability measure. The results
are worse for both the conditional empirical distribution and the conditional LC-model, but
worst for the random distribution (ca. 14 %). Note that these numbers have to be considered

in the context of an average of ca. 10 translation choices for each noun.

However, as can be seen in Fig. 5.24, showing the recall results for the disambiguators,
the main advantage of our LC-disambiguator is the gain in recall it has over the empirical
distribution. That is, the high smoothing power of the LC-model enables a disambiguation

decision for nearly every test item, i.e., argmax prco(ve,n) is never undefined since there is
neTrans(ng)

no case where prc(ve,n) =0 for all n € Trans(ng). Thus we get a recall percentage of ca. 43
% for the best LC-disambiguators compared to 36.167 % for the joint empirical distribution.
Random choice gives a result of ca. 14 % recall.

Note that the curves for the LC-disambiguator have the same shape as the curves resulting
from the pseudo-disambiguation task reported above, thus making it a good guess to choose
a proper LC-model in terms of class-cardinality from the cheaper pseudo-disambiguation task

rather than choosing it from the labor-intensive evaluation on a gold standard.

In a subset of 100 test items, a human judge having access only to v, and the set of
candidates for ne, i.e. the information used by the model, selected among translations. On
this set, human performance was 39 % precision and recall. Performance for class models of
size 100, 200, and 300 was 35 %, 39 %, and 45 % respectively (precision = recall ). Joint

empirical performance was 43 % precision and 34 % recall.
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5.6.4 Discussion

We have proposed a statistical disambiguation component based on latent class models on

pairs of grammatically related lexical items.

We believe the method meets the main conditions on a powerful statistical disambiguation
component because:

1. The LC disambiguator has a high smoothing power, thus it is robust.

2. It resolves translation ambiguities in just one run, so it is quick.

3. It uses only minimal informations from the symbolic transfer component, so it can be

called economic.
4. Tt relies only on monolingual information, so it is portable.

5. Evaluation on a pseudo-disambiguation task (80 % accuracy) and on a golden standard
method (43 % accuracy on ca. 10 alternatives in average) shows that the method is

accurate.
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