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Inside-Outside Estimation of a Lexicalized PCFG for

(German

— GOLD —

Franz Beil, Glenn Carroll, Detlef Prescher, Stefan Riezler, and Mats Rooth

Abstract

The paper describes an extensive experiment in inside-outside estimation of a lexi-
calized probabilistic context free grammar for German verb-final clauses. Grammar
and formalism features which make the experiment feasible are described. Successive

models are evaluated on precision and recall of phrase markup.
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4.1 Introduction

Charniak (1995) and Carroll and Rooth (1998) present head-lexicalized probabilistic context
free grammar formalisms, and show that they can effectively be applied in inside-outside
estimation of syntactic language models for English, the parameterization of which encodes
lexicalized rule probabilities and syntactically conditioned word-word bigram collocates. The
present paper describes an experiment where a slightly modified version of Carroll and Rooth’s
model was applied in a systematic experiment on German, which is a language with rich
inflectional morphology and free word order (or rather, compared to English, free-er phrase
order). We emphasize techniques which made it practical to apply inside-outside estimation
of a lexicalized context free grammar to such a language. These techniques relate to the
treatment of argument cancellation and scrambled phrase order; to the treatment of case
features in category labels; to the category vocabulary for nouns, articles, adjectives and their
projections; to lexicalization based on uninflected lemmata rather than word forms; and to

exploitation of a parameter-tying feature.

4.2 Corpus and morphology

The data for the experiment is a corpus of German subordinate clauses extracted by regular
expression matching from a 200 million token newspaper corpus. The clause length ranges
between four and 12 words. Apart from infinitival VPs as verbal arguments, there are no further
clausal embeddings, and the clauses do not contain any punctuation except for a terminal
period. The corpus contains 4128873 tokens and 450526 clauses which yields an average of
9.16456 tokens per clause. Tokens are automatically annotated with a list of part-of-speech
(PoS) tags using a computational morphological analyser based on finite-state technology
(Karttunen et al. (1994), Schiller and Stockert (1995)).

A problem for practical inside-outside estimation of an inflectional language like German
arises with the large number of terminal and low-level non-terminal categories in the grammar
resulting from the morpho-syntactic features of words. Apart from major class (noun, adjective,
and so forth) the analyser provides an ambiguous word with a list of possible combinations of
inflectional features like gender, person, number (cf. the top part of Fig. 4.1 for an example
ambiguous between nominal and adjectival PoS; the PoS is indicated following the '+’ sign; the
features enclosed between =’ and '+’ indicate the derivation if available; the entry is headed by
the lemma of the analysandum; Pos is the feature for an adjective’s positive form as opposed
to comparative or superlative; the ’*’-sign marks uppercase forms.). In order to reduce the
number of parameters to be estimated, and to reduce the size of the parse forest used in inside-
outside estimation, we collapsed the inflectional readings of adjectives, adjective derived nouns,

article words, and pronouns to a single morphological feature (see separated last line in Fig.
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analyze> Deutsche
deutsch”ADJ.Pos+NN.Fem.Akk.Sg
deutsch”ADJ.Pos+NN.Fem.Nom.Sg
deutsch”ADJ.Pos+NN.Masc.Nom.Sg.Sw
deutsch”ADJ.Pos+NN.Neut.Akk.Sg.Sw
deutsch”ADJ.Pos+NN.Neut.Nom.Sg.Sw
deutsch”ADJ.Pos+NN.NoGend.Akk.P1.S5t
deutsch”ADJ.Pos+NN.NoGend.Nom.P1.St
*deutsch+ADJ.Pos.Fem. Akk.Sg
*deutsch+ADJ.Pos.Fem.Nom.Sg

10. *deutsch+ADJ.Pos.Masc.Nom.Sg.Sw
11. *deutsch+ADJ.Pos.Neut.Akk.Sg.Sw
12. *deutsch+ADJ.Pos.Neut.Nom.Sg.Sw
13. *deutsch+ADJ.Pos.NoGend.Akk.P1l.St
14. *deutsch+ADJ.Pos.NoGend.Nom.P1.St

© 0 N O O W N -

==> Deutsche { ADJ.E, NNADJ.E }

Figure 4.1: Collapsing Inflectional Features

wiahrend { ADJ.Adv, ADJ.Pred, KOUS, APPR.Dat, APPR.Gen }
sich { PRF.Z }

das { DEMS.Z, ART.Def.Z }

Preisniveau { NN.Neut.NotGen.Sg }

dem { DEMS.M, ART.Def.M }

westdeutschen { ADJ.N }
anndhere { VVFIN }
. { PER }

Figure 4.2: Corpus Clip

4.1 for an example). This reduced the number of low-level categories, as exemplified in Fig. 4.2:
das has one reading as an article and one as a demonstrative; westdeutschen has one reading

as an adjective, with its morphological feature N indicating the inflectional suffix.

We use the special tag UNTAGGED indicating that the analyser fails to provide a tag for the
word. The vast majority of UNTAGGED words are proper names not recognized as such. These

gaps in the morphology have little effect on our experiment.

4.3 Grammar

The grammar is a manually developed headed context-free phrase structure grammar for
German subordinate clauses with 5508 rules and 562 categories, 209 of which are terminal
categories. The formalism is that of Carroll and Rooth (1998), henceforth C+R:
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daB
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[#] 1.000000 IP
0.661293 VPP.np.np
0.125495 VPP.h
0.104186 VPK.n
0.087692 VPP.dp.dp
0.020743 VPP.d
0.000556 VPP.ncl.nd
0.000029 VPP
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Word-by-word gloss of the clause on the left:
’that Sarajevo over the airport with the essentials supplied will can’

Figure 4.3: Chart browser

mother -> non-heads head’ non-heads (freq)

The rules are head marked with a prime. The non-head sequences may be empty. freq
is a rule frequency, which is initialized randomly and subsequently estimated by the inside
outside-algorithm. To handle systematic patterns related to features, rules were generated by
Lisp functions, rather than being written directly in the above form. With very few exceptions

(rules for coordination, S-rule), the rules do not have more than two daughters.

Grammar development is facilitated by a chart browser that permits a quick and efficient
discovery of grammar bugs (Carroll 1997a). Fig. 4.3 shows that the ambiguity in the chart is
quite considerable even though grammar and corpus are restricted. For the entire corpus, we
computed an average 9202 trees per clause. In the chart browser, the categories filling the cells
indicate the most probable category for that span with their estimated frequencies. The pop-up
window under IP presents the ranked list of all possible categories for the covered span. Rules
(chart edges) with frequencies can be viewed with a further menu. In the chart browser, colors
are used to display frequencies (between 0 and 1) estimated by the inside-outside algorithm.
This allows properties shared across tree analyses to be checked at a glance; often grammar

and estimation bugs can be detected without mouse operations.

The grammar covers 88.5% of the clauses and 87.9% of the tokens contained in the corpus.
Parsing failures are mainly due to UNTAGGED words contained in 6.6% of the failed clauses, the
pollution of the corpus by infinitival constructions (=1.3%), and a number of coordinations

not covered by the grammar (=1.6%).
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NP.Nom NP.Akk NP.Gen NP.Dat NP.Gen NP.Dat
NC.Dir NC.Obl NC.Obl
ART1.E NN1.Fem.Dir.Sw ART1.Indef.R NN1.Fem.Obl.Sw NN1.Fem.Obl.St
ART.Indef.E ADJ1.E NN1.Fem.Dir.Sw ART.Indef.R ADJ1.N NN1.Fem.Obl.Sw ADJ1.R NN1.Fem.Obl.St
"eine" “einer"
ADJ.E NN.Fem.Cas.Sg ADJ.N NN.Fem.Cas.Sg ADJ.R NN.Fem.Cas.Sg
"gute” "Gelegenheit" "anderen” "Gelegenheit" "anderer" "Gelegenheit"

Glosses:’a good opportunity’, ’a different opportunity’, ’different opportunity’

Figure 4.4: Noun Projections

4.3.1 Case features and agreement

On nominal categories, in addition to the four cases Nom, Gen, Dat, and Akk, case features
with a disjunctive interpretation (such as Dir for Nom or Akk) are used. The grammar is
written in such a way that non-disjunctive features are introduced high up in the tree. Figure
4.4 illustrates the use of disjunctive features in noun projections: The terminal NN contains
the four-way ambiguous Cas case feature; the N-bar (NN1) and noun chunk NC projections
disambiguate to two-way ambiguous case features Dir and Obl; the weak/strong (Sw/St)
feature of NN1 facilitates or prevents combination with a determiner, respectively; only as soon
as the NP projection, the case feature appears in disambiguated form. The use of disjunctive
case features results in some reduction in the size of the parse forest, and some parameter
pooling. Essentially the full range of agreement inside the noun phrase is enforced. Agreement
between the nominative NP and the tensed verb (e.g. in number) is not enforced by the

grammar, in order to control the number of parameters and rules.

For noun phrases we employ Abney’s chunk grammar organization (Abney 1996). The noun
chunk (NC) is an approximately non-recursive projection that excludes post-head complements
and (adverbial) adjuncts introduced higher than pre-head modifiers and determiners but in-
cludes participial pre-modifiers with their complements. Since we perform complete context
free parsing, parse forest construction, and inside-outside estimation, chunks are not moti-
vated by deterministic parsing. Rather, they facilitate evaluation and graphical debugging, by

tending to increase the span of constituents with high estimated frequency.
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class # frame types

VPA 15 n, na, nad, nai, nap, nar, nd, ndi,
ndp, ndr, ni, nir, np, npr, nr
VPP 13 d, di, dp, dr, i, ir, n, nd, ni, np, p,

pr, r
VPI 10 a, ad, ap, ar, d, dp, dr, p, pr, r
VPK 2 i,n

Table 4.1: Number and types of verb frames

VPA .na.na VPA .na.na

SN TN

NP.Nom VPA.na.a NP.Akk VPA.na.n

N N

NP.Akk VPA.na NP.Nom VPA.na

Figure 4.5: Coding of canonical and scrambled argument order

4.3.2 Subcategorisation frames of verbs

The grammar distinguishes four subcategorisation frame classes: active (VPA), passive (VPP),
infinitival (VPI) frames, and copula constructions (VPK). A frame may have maximally three
arguments. Possible arguments in the frames are nominative (n), dative (d) and accusative (a)
NPs, reflexive pronouns (r), PPs (p), and infinitival VPs (i). The grammar does not distinguish
plain infinitival VPs from zu-infinitival VPs. The grammar is designed to partially distinguish
different PP frames relative to the prepositional head of the PP. A distinct category for the
specific preposition becomes visible only when a subcategorized preposition is cancelled from
the subcat list. This means that specific prepositions do not figure in the evaluation discussed

below. The number and the types of frames in the different frame classes are given in Table 4.1.

German, being a language with comparatively free phrase order, allows for scrambling of
arguments. Scrambling is reflected in the particular sequence in which the arguments of the
verb frame are saturated. Compare Figure 4.5 for an example of a canonical subject-object
order in an active transitive frame and its scrambled object-subject order. The possibility
of scrambling verb arguments yields a substantial increase in the number of rules in the
grammar (e.g. 102 combinatorically possible argument rules for all in VPA frames). Adverbs
and non-subcategorized PPs are introduced as adjuncts to VP categories which do not saturate

positions in the subcat frame.

In earlier experiments, we employed a flat clausal structure, with rules for all permutations
of complements. As the number of frames increased, this produced prohibitively many rules,

particularly with the inclusion of adjuncts.
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4.4 Parameters

The parameterization is as in C+R, with one significant modification. Parameters consist
of (i) rule parameters, corresponding to right hand sides conditioned by parent category and
parent head; (ii) lexical choice parameters for non-head children, corresponding to child lemma
conditioned by child category, parent category, and parent head lemma. See C+R or Charniak
(1995) for an explanation of how such parameters define a probabilistic weighting of trees.
The change relative to C+R is that lexicalization is by uninflected lemma rather than word
form. This reduces the number of lexical parameters, giving more acceptable model sizes and
eliminating splitting of estimated frequencies among inflectional forms. Inflected forms are
generated at the leaves of the tree, conditioned on terminal category and lemma. This results

in a third family of parameters, though usually the choice of inflected form is deterministic.

A parameter pooling feature is used for argument filling where all parent categories of
the form VP.x.y are mapped to a category VP.x in defining lexical choice parameters. The
consequence is e.g. that an accusative daughter of a nominative-accusative verb uses the same
lexical choice parameter, whether a default or scrambled word order is used. (This feature was
used by C+R for their phrase trigram grammar, not in the linguistic part of their grammar.)
Not all desirable parameter pooling can be expressed in this way, though; for instance rule
parameters are not pooled, and so get split when the parent category bears an inflectional

feature.

4.5 Estimation

The training of our probabilistic CFG proceeds in three steps: (i) unlexicalized training with
the supar parser, (ii) bootstrapping a lexicalized model from the trained unlexicalized one
with the ultra parser, and finally (iii) lexicalized training with the hypar parser (Carroll
1997b). Each of the three parsers uses the inside-outside algorithm. supar and ultra use
an unlexicalized weighting of trees, while hypar uses a lexicalized weighting of trees. ultra
and hypar both collect frequencies for lexicalized rule and lexical choice events, while supar

collects only unlexicalized rule frequencies.

Our experiments have shown that training an unlexicalized model first is worth the ef-
fort. Despite our use of a manually developed grammar that does not have to be pruned of
superfluous rules like an automatically generated grammar, the lexicalized model is notably
better when preceded by unlexicalized training (see also Ersan and Charniak (1995) for related
observations). A comparison of immediate lexicalized training (without prior training of an
unlexicalized model) and our standard training regime that involves preliminary unlexicalized
training speaks in favor of our strategy (cf. the different 'lex 0’ and ’lex 2’ curves in figures

4.7 and 4.8). However, the amount of unlexicalized training has to be controlled in some way.
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A B C

52.0199 1: 53.7654 1: 49.8165
25.3652 2: 26.3184 2:  23.1008
24.5905 3: 25.5035 3: 22.4479

13: 24.2872 55:  25.0548 70:  22.1445
14: 24.2863 56: 25.0549 80: 22.1443
15: 24.2861 57:  25.0549 90: 22.1443
16: 24.2861 58: 25.0549 95:  22.1443
17: 24.2867 59:  25.055 96: 22.1444

Table 4.2: Overtraining (iteration: cross-entropy on heldout data)

A standard criterion to measure overtraining is to compare log-likelihood values on held-out
data of subsequent iterations. While the log-likelihood value of the training data is theoretically
guaranteed to converge through subsequent iterations, a decreasing log-likelihood value of the
held-out data indicates overtraining. Instead of log-likelihood, we use the inversely proportional
cross-entropy measure. Table 4.2 shows comparisons of different sizes of training and heldout
data (training/heldout): (A) 50k/50k, (B) 500k/500k, (C) 4.1M/500k. The overtraining effect
is indicated by the increase in cross-entropy from the penultimate to the ultimate iteration in

the tables. Overtraining results for lexicalized models are not yet available.

However, a comparison of precision/recall measures on categories of different complexity
through iterative unlexicalized training shows that the mathematical criterion for overtraining
may lead to bad results from a linguistic point of view. While we observed more or less
converging precision/recall measures for lower level structures such as noun chunks, iterative
unlexicalized training up to the overtraining threshold turned out to be disastrous for the
evaluation of complex categories that depend on almost the entire span of the clause. The
recognition of subcategorization frames through 60 iterations of unlexicalized training shows
a massive decrease in precision/recall from the best to the last iteration, even dropping below

the results with the randomly initialized grammar (see Figure 4.8).

4.5.1 Training regime

We compared lexicalized training with respect to different starting points: a random unlexi-
calized model, the trained unlexicalized model with the best precision/recall results, and an
unlexicalized model that comes close to the cross-entropy overtraining threshold. (For the ef-
fect of differently randomized rule frequencies, we refer the reader to Appendix 2.) The details

of the training steps are as follows:

(1) 0,2 and 60 iterations of unlexicalized parsing with supar;

(2) lexicalization with ultra using the entire corpus;
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Word-by-word gloss of the clause:
’that he himself in his own ranks hiw skin defend must’

Figure 4.6: Chart browser for manual NC labelling

(3) 23 iterations of lexicalized parsing with hypar.

The training was done simultaneously on four machines (two 167 MHz UltraSPARC with
188 MB and 312 MB main memory, and two 296 MHz SUNW UltraSPARC-IT with 1.1 GB
main memory). Using the grammar described here, one iteration of supar on the entire corpus
takes about 2.5 hours, lexicalization and generating an initial lexicalized model takes more

than six hours, and an iteration of lexicalized parsing can be done in 5.5 hours.

4.6 Evaluation

For the evaluation, a total of 600 randomly selected clauses were manually annotated by two
labellers. Using a chart browser, the labellers filled the appropriate cells with category names
NC and PPART, and those of maximal VP projections (cf. Figure 4.6 for an example of NC-
labelling). We included prepositional phrases with preposition incorporated determiners (i.e.
PPART, e.g. ’beim Zahnarzt’, ’at the dentist’) in the set of annotated noun chunks because
the left boundary of the NC contained within the prepositional phrase is incorporated into the
preposition word. Subsequent alignment of the labellers decisions resulted in a total of 1353
labelled NC categories: 627 NC.Nom, 319 NC.Akk, 253 NC.Dat, 75 NC.Gen, 73 PPART.Dat, and
6 PPART.Akk. The total of 584 labelled VP categories subdivides into 21 different verb frames
with 340 different lemma heads. The dominant frames are active transitive (164 occurrences)
and active intransitive (117 occurrences). They represent almost half of the annotated frames.
Thirteen frames occur less than ten times, five of which just once (compare Table 4.3 for the

numbers of individual frames).
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VPA.na 164 VPP 4
VPAn 117 VPPp 3
VPK.n 90 VPA.npr 3
VPP.n 64 VPAni 2
VPAnp 62 VPA.ndr 2
VPAnr 19 VPPd 1
VPA.nd 16 VPLp 1
VPA.nap 12 VPlLa 1
VPP.np 9 VPA.nir 1
VPA.nad 8 VPA.ndp 1
VPP.nd 4

Table 4.3: Frames in the test set

4.6.1 Methodology

To evaluate iterative training, we extracted maximum probability (Viterbi) trees for the 600
clause test set in each iteration of parsing. For extraction of a maximal probability parse
in unlexicalized training, we used Schmid’s lopar parser (Schmid 1999). Trees were mapped
to a database of parser generated markup guesses, and we measured precision and recall
against the manually annotated category names and spans. Precision gives the ratio of correct
guesses over all guesses, and recall the ratio of correct guesses over the number of phrases
identified by human annotators. Here, we render only the precision/recall results on pairs of
category names and spans, neglecting less interesting measures on spans alone. For the figures
of adjusted recall, the number of unparsed misses has been subtracted from the number of

possibilities.

In the following, we focus on the combination of the best unlexicalized model and the
lexicalized model that is grounded on the former. In addition, as mentioned in section 4.5.1,
we compare the results for our best lexicalized model (i) to a trained lexicalized model resulting
from lexicalization of a random grammar and (ii) to a trained lexicalized model derived from
an excessively trained unlexicalized model. The precision and recall plots for those models are

labelled 1ex 00 and lex 60, respectively.

Furthermore, in Appendix 3, we compare the training results with respect to varying initial

random states of the grammar.

4.6.2 NC Evaluation

Figure 4.7 plots precision/recall for the training runs described in section 4.5.1, with lexicalized
parsing starting after 0, 2, or 60 unlexicalized iterations. The best results are achieved by
starting with lexicalized training after two iterations of unlexicalized training. Of a total of

1353 annotated NCs with case, 1103 are correctly recognized in the best unlexicalized model
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and 1112 in the last lexicalized model. With a number of 1295 guesses in the unlexicalized and
1288 guesses in the final lexicalized model, we gain 1.2% in precision (85.1% vs. 86.3%) and
0.6% in recall (81.5% vs. 82.1%) through lexicalized training. Adjustment to parsed clauses
yields 88% vs. 89.2% in recall. As shown in Figure 4.7, the gain is achieved already within the

first iteration; it is equally distributed between corrections of category boundaries and labels.

0.88 T T T T T T T T T
0.86 [ / B
0.84 7" N, e e v S— 4
0.82 |, B
S 0.78 |- ’ -
] !
g 0.76 o precision lex 02 ——
i v precision unlex ---—---—-
0.74 .- precision lex OO0 - -
precision lex 60
L recall lex 02 ----- |
0.72 recall unlex ----
L : recall lex OO -----
0.7 I recall lex 60 -]
0.68 . . . . . . . . .
o 10 20 30 40 50 60 70 80 90

iteration #

Figure 4.7: Precision/recall measures on NCs with case (random 0)

The comparatively small gain with lexicalized training could be viewed as evidence that
the chunking task is too simple for lexical information to make a difference. However, we find
about 7% revised guesses from the unlexicalized to the first lexicalized model. Currently, we

do not have a clear picture of the newly introduced errors.

The plots labeled “00” are results for lexicalized training starting from a random initial
grammar. The precision measure of the first lexicalized model falls below that of the un-
lexicalized random model (74%), only recovering through lexicalized training to equalize the
precision measure of the random model (75.6%). This indicates that some degree of unlexical-

ized initialization is necessary, if a good lexicalized model is to be obtained.

Skut and Brants (1998) report 84.4% recall and 84.2% for NP and PP chunking without
case labels. While these are numbers for a simpler problem and are slightly below ours, they
are figures for an experiment on unrestricted sentences. A genuine comparison has to await

extension of our model to free text.

4.6.3 Verb Frame Evaluation

Figure 4.8 gives results for verb frame recognition under the same training conditions. Again,
we achieve best results by lexicalizing the second unlexicalized model. Of a total of 584 an-
notated verb frames, 384 are correctly recognized in the best unlexicalized model and 397
through subsequent lexicalized training. Precision for the best unlexicalized model is 68.4%.
This is raised by 2% to 70.4% through lexicalized training; recall is 65.7%/68%; adjustment

by 41 unparsed misses makes for 70.4%/72.8% in recall. The rather small improvements are in
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contrast to 88 differences in parser markup, i.e. 15.7%, between the unlexicalized and second
lexicalized model. The main gain is observed within the first two iterations (cf. Figure 4.8; for

readability, we dropped the recall curves when more or less parallel to the precision curves).
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Figure 4.8: Precision measures on all verb frames (random 0)

Results for lexicalized training without prior unlexicalized training are better than in the

NC evaluation, but fall short of our best results by more than 2%.

The most notable observation in verb frame evaluation is the decrease of precision of
frame recognition in unlexicalized training from the second iteration onward. After several
dozen iterations, results are 5% below a random model and 14% below the best model. The
primary reason for the decrease is the mistaken revision of adjoined PPs to argument PPs.
E.g. the required number of 164 transitive frames is missed by 76, while the parser guesses
64 VPA.nap frames in the final iteration against the annotator’s baseline of 12. In contrast,

lexicalized training generally stabilizes w.r.t. frame recognition results after only few iterations.

The plot labeled “lex 60” gives precision for a lexicalized training starting from the unlexi-
calized model obtained with 60 iterations, which measured by linguistic criteria is a very poor

state. As far as we know, lexicalized EM estimation never recovers from this bad state.

4.6.4 Evaluation of non-PP Frames

Because examination of individual cases showed that PP attachments are responsible for many
errors, we did a separate evaluation of non-PP frames. We filtered out all frames labelled
with a PP argument from both the maximal probability parses and the manually annotated
frames (91 filtered frames), measuring precision and recall against the remaining 493 labeller

annotated non-PP frames.

For the best lexicalized model, we find somewhat but not excessively better results than
those of the evaluation of the entire set of frames. Of 527 guessed frames in parser markup,

382 are correct, i.e. a precision of 72.5%. The recall figure of 77.5% is considerably better since
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Figure 4.9: Precision measures on non-PP frames (random 0)

overgeneration of 34 guesses is neglected. The differences with respect to different starting

points for lexicalization emulate those in the evaluation of all frames.

The rather spectacular looking precision and recall differences in unlexicalized training
confirm what was observed for the full frame set. From the first trained unlexicalized model
throughout unlexicalized training, we find a steady increase in precision (70% first trained
model to 78% final model) against a sharp drop in recall (78% peek in the second model vs.
50% in the final). Considering our above remarks on the difficulties of frame recognition in
unlexicalized training, the sharp drop in recall is to be expected: Since recall measures the
correct parser guesses against the annotator’s baseline, the tendency to favor PP-arguments
over PP-adjuncts leads to a loss in guesses when PP-frames are abandoned. Similarly, the rise
in precision is mainly explained by the decreasing number of guesses when cutting out non-PP

frames. For further discussion of what happens with individual frames, see Appendix 1.

One systematic result in these plots is that performance of lexicalized training stabilizes
after a few iterations. This is consistent with what happens with rule parameters for individual

verbs, which are close to their final values within five iterations.

4.7 Conclusion

Our principal result is that scrambling-style free-er phrase order, case morphology and sub-
categorization, and NP-internal gender, number and case agreement can be dealt with in a
head-lexicalized PCFG formalism by means of carefully designed categories and rules which
limit the size of the packed parse forest and give desirable pooling of parameters. Hedging this,
we point out that we made compromises in the grammar (notably, in not enforcing nominative-

verb agreement) in order to control the number of categories, rules, and parameters.

A second result is that iterative lexicalized inside-outside estimation appears to be benefi-
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cial, although the precision/recall increments are small. We believe this is the first substantial
investigation of the utility of iterative lexicalized inside-outside estimation of a lexicalized
probabilistic grammar involving a carefully built grammar where parses can be evaluated by

linguistic criteria.

A third result is that using too many unlexicalized iterations (more than two) is detri-
mental. A criterion using cross-entropy overtraining on held-out data dictates many more

unlexicalized iterations, and this criterion is therefore inappropriate.

Finally, we have clear cases of lexicalized EM estimation being stuck in linguistically bad
states. As far as we know, the model which gave the best results could also be stuck in a
comparatively bad state. We plan to experiment with other lexicalized training regimes, such

as ones which alternate between different training corpora.

The experiments are made possible by improvements in parser and hardware speeds, the
carefully built grammar, and evaluation tools. In combination, these provide a unique envi-
ronment for investigating training regimes for lexicalized PCFGs. Much work remains to be
done in this area, and we feel that we are just beginning to develop understanding of the time
course of parameter estimation, and of the general efficacy of EM estimation of lexicalized

PCFGs as evaluated by linguistic criteria.

We believe our current grammar of German could be extended to a robust free-text
chunk/phrase grammar in the style of the English grammar of Carroll and Rooth (1998) with
about a month’s work, and to a free-text grammar treating verb-second clauses and additional
complementation structures (notably extraposed clausal complements) with about one year
of additional grammar development and experiment. These increments in the grammar could
easily double the number of rules. However this would probably not pose a problem for the

parsing and estimation software.
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Appendix 1: Evaluation of Individual Frames

all guesses / correct guesses

iter.|| VPA.n ‘VPA.na ‘VPA.nd‘VPA.nr‘VPA.np‘VPA.nap
possible 117 164 16 19 62 12
random 213/ 96(107/ 94|35/ 6(34/ 19/ 0/ 0| 1/ 0
unlex 2/|152/ 86(161/131|19/ 731/ 19| 2/ 0| 0/ 0
unlex 60| 53/ 46| 89/ 79| 7/ 5(11/ 8|92/ 40|63/ 7
unlex 100|| 53 / 46| 83/ 74| 7/ 5(11/ 8|90/ 40|65/ 8
lex-00  1|[196/ 99(129/117|28/ 7|34/ 19| 0/ 0| 2/ 0
lex-00 last|[173/ 93|135/122(24/ 7|31/ 18|15/ 10| 3/ 1
lex-02  2|(139/ 88|147/129(19/ 7|27/ 17|13/ 9| 0/ 0
lex-02 last||136/ 87|148/132({18/ 7|27/ 17|19/ 12| 0/ 0
lex-60 1|54/ 50| 68/ 66(25/ 7|11/ 9|85/ 38|51/ 7
lex-60 last|| 59 / 55| 79/ 7620/ 8| 9/ 8|87/ 44|54/ 7

all guesses / correct guesses

iter.|| copula ‘ VPP.n ‘ others H total
possible 90 64 40 584
random 69/ 60|67/ 51| 34/ 10||560/ 336
unlex 2196/ 77|68/ 52| 32/ 112|561/ 384
unlex 60|(102/ 78|47/ 8(116/ 23||580/ 294
unlex 100|(102/ 78|26/ 21(124/ 25||560/ 305
lex-00 1|75/ 65|72/ 54| 25/ 9||561/ 370
lex-00 last|| 79 / 67|72/ 54| 31/ 10||563/ 382
lex-02  2|[107/ 78|60/ 48| 52/ 18||564/ 394
lex-02 last|[106/ 78|60/ 47| 50/ 17|564/ 397
lex-60  1|[115/ 78|17/ 15(140/ 25||566/ 295
lex-60 last|[114/ 78|20/ 18(124/ 24||566/ 318

Table 4.4: Absolute numbers of guesses and corrects for individual frames

89

In Table 4.4, we compare the absolute number of parser guesses and corrects of individual

frames for our previously described training regime and the different resulting models. The

table contains guesses and corrects of all frames that occur more than ten times in the an-

notator’s markup. Combined measures for the set of frames that occur less than ten times in

the markup are given in the column headed by others. The annotator’s markup is indicated in

the row labelled possible. The row labelled random indicates the figures for the unlexicalized

model resulting from randomly initialized rule frequencies. We chose several key models of

unlexicalized and lexicalized training that are indicated in the first column by iteration num-

bers. For unlexicalized training, we chose the the best model in iteration 2, the worst model

in iteration 60, and the last model, which is already beyond the mathematical overtraining
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Figure 4.10: Precision of individual frames in unlexicalized training
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Figure 4.11: Recall of individual frames in unlexicalized training

threshold. For lexicalized training from a grammar with random frequency rules, we show the
figures for the worst model immediately after lexicalization (lex-00), and the last model. In
the best lexicalized training, we focus on the second and the last model (here, the start before
lexicalization is unlex 2). The figures for the lexicalized training stuck in a bad state (lex-60)

are again from immediately after lexicalization and from the last iteration.

In addition to the absolute figures of correct and incorrect guesses, we plot overall precision
and recall results for individual frames in the course of unlexicalized training (Figures 4.10
and 4.11) and for those in lexicalized training starting from the best unlexicalized model
(Figures 4.12 and 4.13).

unlex. The severe loss in precision following the second iteration during lexicalized training
described in section 4.6.3 is due to a loss in decision mass for intransitive and transitive frames.
Of 131 correctly recognized transitive frames in the second iteration more than 40 are lost in

further training. Of 86 correct guesses of intransitive frames 40 are lost.

The loss with respect to intransitive frames is surprising given that the initial grammar
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is biased towards intransitive frames as witnessed by the figures for the random model (more
than 38% of the total guesses are guesses of intransitive frames). Although the revision of
intransitive guesses is desirable, it oversteps the mark of 117 in the annotator’s handicap by
far (213 guesses in random, 152 guesses in unlex 2, and 53 guesses in unlex 60 and 100). In the
first iterations, intransitive guesses are changed to transitive and copula guesses. Concerning
revisions to copula, we found a systematic error. Past participle forms of verbs are always
associated with a tag list that in addition to the past participle tag VVPP also contains the
tags ADJ.Pred for predicative and ADJ.Adv for adverbial adjectives. Given the ambiguous tag
list, verbs forming their perfect tense forms with the auxiliary ’sein’ (’to be’) allow for an
analysis of ’sein’ as a perfect tense auxiliary and also as a copula verb requiring a predicative.
Similarly, the revision of passive frames to copula constructions in later iterations is to be
explained by reanalysis of the passive auxiliary 'werden’ as a copula verb (cf. the decrease in

guesses of VPP.n in unlex 60 and 100).

Apart from the shift to copula constructions, the dislike for intransitive and transitive is
balanced by the tendency to choose frames that contain a PP-argument. The almost entire
initial lack of PP-frame guesses in unlexicalized models is revised to more than 90 choices
of VPA.np, more than 60 choices of VPA.nap and several low frequency PP-frames in others.
The considerable increase in PP-frame choices contrasts with rather poor precision and recall
results, less than 45% for VPA.np, less than 15% for VPA.nap, and about 20% for the PP-frames
contained in other.

Let us add a remark on the interpretation of the precision and recall plots in figures
4.10 and 4.11. Although the majority of plots for individual frames shows a gain in precision
during unlexicalized training, we noted the dramatic loss in overall precision illustrated back in
Figure 4.8. As already mentioned in the above discussion of absolute numbers, this is due shift
of the parser’s decision mass as illustrated by the decrease in recall of intransitive, transitive,

and passive frames in Figure 4.11.

lex-00/02/60. Apart from very few (mostly insignificant) exceptions, our observation con-
cerning iterative inside-outside estimation succeeding lexicalization is confirmed by the eval-
uation of individual frames. The overall frame evaluation showed small but reliable precision
and recall gains for frame recognition. Irrespective of different starting points, iterative lexi-
calized estimation similarly leads to either slightly increased or steady results for each of the
individual frames with respect to absolute figures of correct guesses. The only notable negative
exception is the loss of six correct choices of intransitive frames in lex-00 accompanied by a
correction from 97 to 80 wrong guesses of intransitives. The most significant gain in early lex-
icalization (lex-00 and lex-02) is achieved for VPA.np frames. In late lexicalization, i.e. lex-60,
lexicalized training mainly rectifies the loss of correct guesses of intransitive frames and of

passive frames with a single nominative argument.
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Figure 4.12: Precision of individual frames in training the best lexi-

calized model
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Figure 4.13: Recall of individual frames in training the best lexicalized

model

The plots for precision in Figure 4.12 and recall in Figure 4.13 of individual frames in lexi-
calized training lex-02 show main gains within the first four iterations. Later shifts in precision
and recall up to iteration 15 are equalled out. In the above discussion of unlexicalized training,
we mentioned VPP.n and the copula construction as an instance of a mutually dependent pair
of frames. In the plots, this can be reidentified by precision/recall gains in the former and

respective losses in the latter.
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Appendix 2: Random Models

In order to give an impression of possible gains through grammar training, we did an evaluation

of 50 different grammars with randomly initialized rule frequencies.

The following plots present precision and recall measures on noun chunk evaluation (Fig-
ure 4.14), frame evaluation (Figure 4.15). The precision of noun chunk recognition is in the
range of 58% and 77%, frame recognition varies between 48% and 62%. We abstained from
including a plot for the variability of non-PP frame recognition in different random models.

It ranges from 52% to 66%.
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Figure 4.14: Precision/recall measures on noun chunks of 50 different

unlexicalized random models
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Figure 4.15: Precision/recall measures on VP frames of 50 different

unlexicalized random models
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Appendix 3: Different Starting Points

In order to validate our results, we chose two grammars from the 50 different rule frequency
randomizations as starting points for unlexicalized and lexicalized training. Random model
20 delivers the worst precision and recall results for frames among all random states. Random
model 25 yields almost identical precision and recall ratios for both noun chunks and sub-
categorization frames, i.e., in the context of all random models, intermediate results for noun
chunks and fair results for frames. The initial grammar used in our main experiment (random

grammar 0) is well above average in precision and recall for both evaluations.

Noun chunks.
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Figure 4.16: Precision/recall measures for NC with case (random 20)
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Figure 4.17: Precision/recall measures for NC with case (random 25)

Starting from different random grammars, precision and recall measures in noun chunk
evaluation for unlexicalized training lead to similar results. Irrespective of initialization, un-
lexicalized training yields between 83% and 84% in precision and between 80% and 81% in
recall of noun chunk recognition. A minor difference is found in the number of iterations within
which the best results will be reached. Starting from a random grammar with poor precision
and recall requires few more iterations of unlexicalized training in order to reach maximally

possible results (cf. Figure 4.16).
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For lexicalized training with different bases for lexicalization, the comparison of different
starting points shows a much more diverse picture (in addition to Figure 4.18 and 4.19 see also
Figure 4.8 in section 4.6.3). In contrast to the models random 0 and random 20, immediate
lexicalization of the random model does not produce poor results for noun chunk recognition.
Furthermore, lexicalized training based on an early model of unlexicalized training may have
hardly any positive effect at all as witnessed by the plots for lex 05 in Figure 4.19. Rather,
the precision results for lex 20 in Figure 4.19 suggest the need for a more careful selection of
the base for lexicalization and further lexicalized inside-outside estimation. However, since our
prime interest is in good results for frame recognition, i.e. good overall results for the entire

model, we have to compromise here.

Frames.
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Figure 4.18: Precision measures for all verb frames (random 20)
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Figure 4.19: Precision measures for all verb frames (random 25)

Again, the results concerning frame recognition in iterative unlexicalized reestimation from
different starting points corroborate our observations presented in section 4.6. Precision gains
in initial iterations are followed by losses more or less severe depending on both precision
in the initial random state and precision in the best unlexicalized model. In contrast to the

observations for precision results in NC evaluation, the precision of frame recognition found for
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random models correlates with precision maxima. Low precision of 48% in random 20 restricts
the maximum to less than 62% within five iterations of unlexicalized training, high precision
in random 0 allows for a maximum of more than 68% within only two iterations. Irrespective
of the particular starting point, 20 iterations of unlexicalized training show a uniform decrease

to about 57% precision after 20 iterations.

The plots for lexicalized training with lexicalization of different base models also support
our findings in section 4.6. In general, it is a good strategy to start with lexicalized training from
a well-trained unlexicalized model in order to obtain best precision results. A notable exception
is lex 00 in random 25, where lexicalization of the random model yields similar precision for
frame recognition as lexicalized training with the unlexicalized model from iteration 5 as its

base.
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